
Victor Ciura
Technical Lead, Advanced Installer
www.advancedinstaller.com

September, 2018

Regular Types
and

Why Do I Care ?

http://www.advancedinstaller.com

�X

Abstract

 “Regular” is not exactly a new concept (pun intended). If we reflect back on STL and its design principles, as
best described by Alexander Stepanov in his 1998 “Fundamentals of Generic Programming” paper or his
lecture on this topic, from 2002, we see that regular types naturally appear as necessary foundational concepts
in programming.

 Why do we need to bother with such taxonomies ? Well, the STL now informally assumes such properties
about the types it deals with and imposes such conceptual requirements for its data structures and algorithms
to work properly. The new Concepts Lite proposal (hopefully part of C++20) is based on precisely defined
foundational concepts such as Semiregular, Regular, EqualityComparable, DefaultConstructible,
LessThanComparable (strict weak ordering), etc. Formal specification of concepts is an ongoing effort in the
ISO C++ Committee and these STL library concepts requirements are being refined as part of Ranges TS
proposal (<experimental/ranges/concepts>).

 Recent STL additions such as string_view, tuple, reference_wrapper, as well as new incoming types for C+
+20 like std::span raise new questions regarding values types, reference types and non-owning “borrow”
types.

 Designing and implementing regular types is crucial in everyday programing, not just library design. Properly
constraining types and function prototypes will result in intuitive usage; conversely, breaking subtle contracts
for functions and algorithms will result in unexpected behavior for the caller.

 This talk will explore the relation between Regular types (and other concepts) and STL containers &
algorithms with examples, common pitfalls and guidance.

2018 Victor Ciura | @ciura_victor

Who Am I ?

@ciura_victor

�X

Advanced Installer Clang Power Tools

2018 Victor Ciura | @ciura_victor

�22018 Victor Ciura | @ciura_victor

�32018 Victor Ciura | @ciura_victor

�42018 Victor Ciura | @ciura_victor

You are here --->

�5

⚙ Part 1 of N

Regular Types
and

Why Do I Care ?

2018 Victor Ciura | @ciura_victor

�6

Why are we talking about this ?

Why Regular types ?

Have we really exhausted all the
cool C++ template<> topics 😜 ?

2018 Victor Ciura | @ciura_victor

�7

This talk is not just about Regular types

2018 Victor Ciura | @ciura_victor

A moment to reflect back on STL and its design principles, as best described

by Alexander Stepanov in his 1998 “Fundamentals of Generic Programming”

paper or his lecture on this topic, from 2002.

�8

This talk is not just about Regular types

2018 Victor Ciura | @ciura_victor

We shall see that regular types naturally appear as necessary foundational

concepts in programming and try to investigate how these requirements fit in
the ever expanding C++ standard, bringing new data structures & algorithms.

�9

This talk is not just about Regular types

2018 Victor Ciura | @ciura_victor

Values

Objects

Concepts

Ordering Relations

Requirements

�102018 Victor Ciura | @ciura_victor

Titus Winters
Modern C++ API Design

http://sched.co/FnLO

🙋$

2018

http://sched.co/FnLO

�112018 Victor Ciura | @ciura_victor

Titus Winters
Modern C++ API Design

http://sched.co/FnLO

Type Properties

What properties can we use to
describe types ?

Type Families

What combinations of type
properties make useful / good

type designs ?

http://sched.co/FnLO

�122018 Victor Ciura | @ciura_victor

Let's start with the basics...

�13

Datum

2018 Victor Ciura | @ciura_victor

A datum is a finite sequence of 0s and 1s

#define

�14

Value Type

2018 Victor Ciura | @ciura_victor

A value type is a correspondence between

a species (abstract/concrete) and a set of datums.

#define

�15

Value

2018 Victor Ciura | @ciura_victor

Value is a datum together with its interpretation.

Eg.

an integer represented in 32-bit two's complement, big endian

A value cannot change.

#define

�16

Value Type & Equality

2018 Victor Ciura | @ciura_victor

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

Lemma 2

If a value type is not ambiguous,

representational equality implies equality.

�17

Object

2018 Victor Ciura | @ciura_victor

An object is a representation of a concrete entity as a value

in computer memory (address & length).

An object has a state that is a value of some value type.

The state of an object can change.

#define

�18

Type

2018 Victor Ciura | @ciura_victor

Type is a set of values with the same interpretation function

and operations on these values.

#define

�19

Concept

2018 Victor Ciura | @ciura_victor

A concept is a collection of similar types.

#define

�202018 Victor Ciura | @ciura_victor

EoP
🙋$

�212018 Victor Ciura | @ciura_victor

• 	Foundations

• Transformations and Their Orbits

• Associative Operations

• Linear Orderings

• Ordered Algebraic Structures

• Iterators

• Coordinate Structures

• Coordinates with Mutable Successors

• Copying

• Rearrangements

• Partition and Merging

• Composite Objects

�222018 Victor Ciura | @ciura_victor

FM2GP
🙋$

�232018 Victor Ciura | @ciura_victor

• 	Egyptian multiplication ~ 1900-1650 BC  

• 	Ancient Greek number theory 

• 	Prime numbers 

• 	Euclid’s GCD algorithm 

• 	Abstraction in mathematics 

• 	Deriving generic algorithms 

• 	Algebraic structures 

• 	Programming concepts 

• 	Permutation algorithms 

• 	Cryptology (RSA) ~ 1977 AD

�242018 Victor Ciura | @ciura_victor

2014

�252018 Victor Ciura | @ciura_victor

Where am I going with this ?

�262018 Victor Ciura | @ciura_victor

Mathematics Really Does Matter

https://www.youtube.com/watch?v=fanm5y00joc

SmartFriends U
 September 27, 2003

One simple algorithm,

refined and improved

over 2,500 years,

while advancing

human understanding

of mathematics

GCD

https://www.youtube.com/watch?v=fanm5y00joc

�272018 Victor Ciura | @ciura_victor

Mathematics Really Does Matter

To those who do not know mathematics it is difficult to
get across a real feeling as to the beauty, the deepest
beauty, of nature ...

If you want to learn about nature, to appreciate nature,
it is necessary to understand the language that she
speaks in.

〝

Richard Feynman

�282018 Victor Ciura | @ciura_victor

Hold on !

"I've been programming for over N years,
and I've never needed any math to do it.

I'll be just fine, thank you."
✋

�292018 Victor Ciura | @ciura_victor

First of all: I don't believe you 😏

The reason things just worked for you

is that other people thought long and hard

about the details of the type system

and the libraries you are using

... such that it feels natural and intuitive to you

�302018 Victor Ciura | @ciura_victor

Stay with me !

I'm going somewhere with this...

�312018 Victor Ciura | @ciura_victor

Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

Lectures presented at
A9

 2012

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

�322018 Victor Ciura | @ciura_victor

Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

I. Spoils of the Egyptians (10h)
How elementary properties of commutativity and associativity of addition and
multiplication led to fundamental algorithmic and mathematical discoveries.

II. Heirs of Pythagoras (12h)
How division with remainder led to discovery of many fundamental
abstractions.

III. Successors of Peano (10h)
The axioms of natural numbers and their relation to iterators.

Lectures presented at
A9

 2012

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

�332018 Victor Ciura | @ciura_victor

It all leads up to...

�342018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Generic programming depends on the decomposition of programs
into components which may be developed separately and

combined arbitrarily, subject only to well-defined interfaces.

〝

http://stepanovpapers.com/DeSt98.pdf

�352018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Among the interfaces of interest, the most pervasively and unconsciously used,

are the fundamental operators common to all C++ built-in types, as extended

to user-defined types, e.g. copy constructors, assignment, and equality.

〝

http://stepanovpapers.com/DeSt98.pdf

�362018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

We must investigate the relations which must hold among these operators

to preserve consistency with their semantics for the built-in types and

with the expectations of programmers.

〝

http://stepanovpapers.com/DeSt98.pdf

�372018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

We can produce an axiomatization of these operators which:

yields the required consistency with built-in types

matches the intuitive expectations of programmers

reflects our underlying mathematical expectations

http://stepanovpapers.com/DeSt98.pdf

�382018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

In other words:

We want a foundation powerful enough to support

any sophisticated programming tasks, but simple and intuitive to reason about.

http://stepanovpapers.com/DeSt98.pdf

�392018 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

Is simplicity a good goal ?

We're C++ programmers, are we not ?

🤓

�402018 Victor Ciura | @ciura_victor

https://www.youtube.com/watch?v=tTexD26jIN4

https://www.youtube.com/watch?v=tTexD26jIN4

�412018 Victor Ciura | @ciura_victor

Simpler code is more readable code

Unsurprising code is more maintainable code

Code that moves complexity to abstractions often has less bugs (eg. vector, RAII)

Compilers and libraries are often much better than you

Is simplicity a good goal ?

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

�422018 Victor Ciura | @ciura_victor

Requires knowledge (language, idioms, domain)

Simplicity is an act of generosity (to others, to future you)

Not about skipping or leaving out

Simplicity is Not Just for Beginners

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

�432018 Victor Ciura | @ciura_victor

Revisiting Regular Types
(after 20 years)

Titus Winters, 2018

https://abseil.io/blog/20180531-regular-types

〝 Good types are all alike; every poorly designed type is poorly defined in its own way.

- adapted with apologies to Leo Tolstoy

Evokes the Anna Karenina principle to designing C++ types:

https://abseil.io/blog/20180531-regular-types

�442018 Victor Ciura | @ciura_victor

Revisiting Regular Types
(after 20 years)

Titus Winters, 2018

https://abseil.io/blog/20180531-regular-types

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

This analysis provides us some basis to evaluate non-owning reference parameters types

(like string_view and span) in a practical fashion, without discarding Regular design.

https://abseil.io/blog/20180531-regular-types

�452018 Victor Ciura | @ciura_victor

Let's go back to the roots...

STL and Its Design Principles

�462018 Victor Ciura | @ciura_victor

STL and Its Design Principles

https://www.youtube.com/watch?v=COuHLky7E2Q

Talk presented at Adobe Systems Inc.
January 30, 2002

http://stepanovpapers.com/stl.pdf

https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

�472018 Victor Ciura | @ciura_victor

STL and Its Design Principles

Fundamental Principles

 Systematically identifying and organizing useful algorithms and data structures

 Finding the most general representations of algorithms

 Using whole-part value semantics for data structures

 Using abstractions of addresses as the interface between algorithms and data structures

�482018 Victor Ciura | @ciura_victor

algorithms are associated with a set of common properties

 Eg. { +, *, min, max } => associative operations

 => reorder operands

 => parallelize + reduction (std::accumulate)

natural extension of 4,000 years of mathematics

exists a generic algorithm behind every while() or for() loop

STL and Its Design Principles

�492018 Victor Ciura | @ciura_victor

STL and Its Design Principles

STL data structures

 STL data structures extend the semantics of C structures

 two objects never intersect (they are separate entities)

 two objects have separate lifetimes

�502018 Victor Ciura | @ciura_victor

STL and Its Design Principles

STL data structures have whole-part semantics

 copy of the whole, copies the parts

 when the whole is destroyed, all the parts are destroyed

 two things are equal when they have the same number of parts

 and their corresponding parts are equal

�512018 Victor Ciura | @ciura_victor

STL and Its Design Principles

Generic Programming Drawbacks

abstraction penalty (rarely)

implementation in the interface

early binding

horrible error messages (no formal specification of interfaces, yet)

duck typing

algorithm could work on some data types, but fail to work/compile

 on some other new data structures (different iterator category, no copy semantics, etc)

👉 We need to fully specify requirements on algorithm types.

�522018 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Examples from STL:

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

EqualityComparable, LessThanComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

https://en.cppreference.com/w/cpp/named_req

�532018 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Named requirements are used in the normative text of the C++ standard to define the
expectations of the standard library.

Some of these requirements are being formalized in C++20 using concepts.

Until then, the burden is on the programmer to ensure that library templates are
instantiated with template arguments that satisfy these requirements.

https://en.cppreference.com/w/cpp/named_req

�542018 Victor Ciura | @ciura_victor

What Is A Concept, Anyway ?

Formal specification of concepts makes it possible to verify that template arguments
satisfy the expectations of a template or function during overload resolution and
template specialization (requirements).

https://en.cppreference.com/w/cpp/language/constraints

Each concept is a predicate, evaluated at compile time, and becomes a part of the
interface of a template where it is used as a constraint.

https://en.cppreference.com/w/cpp/language/constraints

�552018 Victor Ciura | @ciura_victor

What's the Practical Upside ?

If I'm not a library writer 🤓,

Why Do I Care ?

�562018 Victor Ciura | @ciura_victor

What's the Practical Upside ?

Using STL algorithms & data structures

Designing & exposing your own vocabulary types
(interfaces, APIs)

�572018 Victor Ciura | @ciura_victor

I need to tell you a story...

🎓

�582018 Victor Ciura | @ciura_victor

Let's explore one popular STL algorithm

... and its requirements

std::sort()

�592018 Victor Ciura | @ciura_victor

Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

Why is this one special ?

Because ~50 STL facilities (algorithms & data structures) expect some Compare type.

Eg.

template<class RandomIt, class Compare>
constexpr void sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

�602018 Victor Ciura | @ciura_victor

Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

But what kind of ordering relationship is needed for the elements of the collection ?

🤔

https://en.cppreference.com/w/cpp/named_req/Compare

�612018 Victor Ciura | @ciura_victor

Compare Concept

But what kind of ordering relationship is needed 🤔

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

{ Partial ordering }
https://en.wikipedia.org/wiki/Partially_ordered_set

�622018 Victor Ciura | @ciura_victor

Compare Examples

vector<string> v = { ... };

sort(v.begin(), v.end());

sort(v.begin(), v.end(), less<>());

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return s1 < s2;
});

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return stricmp(s1.c_str(), s2.c_str()) < 0;
});

✅

�632018 Victor Ciura | @ciura_victor

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 return (p1.x < p2.x) && (p1.y < p2.y);
});

Is this a good Compare predicate for 2D points ?

�642018 Victor Ciura | @ciura_victor

Compare Examples

Let { P1, P2, P3 }
x1 < x2; y1 > y2;
x1 < x3; y1 > y3;
x2 < x3; y2 < y3;

auto comp = [](const Point & p1,
 const Point & p2)
{
 return (p1.x < p2.x) && (p1.y < p2.y);
}

=>

P2 and P1 are unordered (P2 ? P1) | comp(P2,P1)==false && comp(P1,P2)==false
P1 and P3 are unordered (P1 ? P3) | comp(P1,P3)==false && comp(P3,P1)==false
P2 and P3 are ordered (P2 < P3) | comp(P2,P3)==true && comp(P3,P2)==false

�652018 Victor Ciura | @ciura_victor

Compare Examples
Definition:

if comp(a,b)==false && comp(b,a)==false
=> a and b are equivalent

auto comp = [](const Point & p1,
 const Point & p2)
{
 return (p1.x < p2.x) && (p1.y < p2.y);
}

=>

P2 is equivalent to P1
P1 is equivalent to P3
P2 is less than P3

🚫

�662018 Victor Ciura | @ciura_victor

Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

�672018 Victor Ciura | @ciura_victor

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

Strict weak ordering

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

�682018 Victor Ciura | @ciura_victor

Total ordering relationship

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

 comp() induces a strict total ordering

on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes

partition the elements of the set,

and are totally ordered by <

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

�692018 Victor Ciura | @ciura_victor

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 // compare distance from origin
 return (p1.x * p1.x + p1.y * p1.y) <
 (p2.x * p2.x + p2.y * p2.y);
});

✅

Is this a good Compare predicate for 2D points ?

�702018 Victor Ciura | @ciura_victor

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 if (p1.x < p2.x) return true;
 if (p2.x < p1.x) return false;

 return p1.y < p2.y;
});

Is this a good Compare predicate for 2D points ?

✅

�712018 Victor Ciura | @ciura_victor

Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.

(we first compared by X coordinate, and then by Y coordinate for equivalent X)

std::pair<T, U> defines the six comparison operators

in terms of the corresponding operators of the pair's components

This strategy is analogous to how a dictionary works,

so it is often called dictionary order or lexicographical order.

�722018 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Examples from STL:

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

EqualityComparable, LessThanComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

http://wg21.link/p0898

https://en.cppreference.com/w/cpp/named_req
http://wg21.link/p0898

�732018 Victor Ciura | @ciura_victor

SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

http://wg21.link/p0898

#define

http://wg21.link/p0898

�742018 Victor Ciura | @ciura_victor

Regular
(aka "Stepanov Regular")

EqualityComparable

SemiRegular

+

http://wg21.link/p0898

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

#define

http://wg21.link/p0898

�752018 Victor Ciura | @ciura_victor

STL assumes equality is always defined (at least, equivalence relation)

STL algorithms assume Regular data structures

http://wg21.link/p0898

Regular
(aka "Stepanov Regular")

http://wg21.link/p0898

�762018 Victor Ciura | @ciura_victor

LessThanComparable

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

Irreflexivity ∀ a, (a < a)==false

Antisymmetry ∀ a, b, if (a < b)==true => (b < a)==false

Transitivity ∀ a, b, c, if (a < b)==true and (b < c)==true
=> (a < c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

where:

equiv(a,b) : (a < b)==false && (b < a)==false

<

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

�772018 Victor Ciura | @ciura_victor

EqualityComparable

https://en.cppreference.com/w/cpp/named_req/EqualityComparablehttps://en.wikipedia.org/wiki/Equivalence_relation

Reflexivity ∀ a, (a == a)==true

Symmetry ∀ a, b, if (a == b)==true => (b == a)==true

Transitivity ∀ a, b, c, if (a == b)==true and (b == c)==true
=> (a == c)==true

The type must work with operator== and the result should have standard semantics.

https://en.cppreference.com/w/cpp/named_req/EqualityComparable
https://en.wikipedia.org/wiki/Equivalence_relation

�782018 Victor Ciura | @ciura_victor

Equality vs. Equivalence

For the types that are both EqualityComparable and LessThanComparable,

the C++ standard library makes a clear distinction between equality and equivalence

where:

equal(a,b) : (a == b)
equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

Equality is both an equivalence relation and a partial order.

�792018 Victor Ciura | @ciura_victor

Equality vs. Equivalence

a == b ⇔ ∀ predicate P, P(a) == P(b)

Logicians might define equality via the following equivalence:

But this definition is not very practical in programming :(

�802018 Victor Ciura | @ciura_victor

Equality

Defining equality is hard 😞

�812018 Victor Ciura | @ciura_victor

Equality

Ultimately, Stepanov proposes the following definition*:

Two objects are equal if their corresponding parts are equal (applied recursively),

including remote parts (but not comparing their addresses), excluding inessential
components, and excluding components which identify related objects.

* “although it still leaves room for judgement” http://stepanovpapers.com/DeSt98.pdf

〝

😓

http://stepanovpapers.com/DeSt98.pdf

�82

C++98/03

Mandatory Slide

Gauging the audience...

C++11 C++14 C++17

🙋$
2018 Victor Ciura | @ciura_victor

�832018 Victor Ciura | @ciura_victor

Three-way comparison

operator <=>

🛸 C++20

http://wg21.link/p0515

Bringing consistent comparison operations...

(a <=> b) < 0 if a < b
(a <=> b) > 0 if a > b
(a <=> b) == 0 if a and b are equal/equivalent

http://wg21.link/p0515

�842018 Victor Ciura | @ciura_victor

Three-way comparison

operator <=>🛸 C++20

The comparison categories for:

It's all about relation strength 💪

�852018 Victor Ciura | @ciura_victor

Three-way comparison

operator<=>🛸 C++20

Wish list for:

I would like to see <=> implemented for all STL vocabulary types.

std::string
std::string_view
std::optional
std::span

...

But, we need to let the dust settle a bit,

so that we have time to really get practical experience with it...

�862018 Victor Ciura | @ciura_victor

std::optional<T>

Any time you need to express:

- value or not value
- possibly an answer
- object with delayed initialization

Using a common vocabulary type for these cases raises the level of abstraction,
making it easier for others to understand what your code is doing.

�872018 Victor Ciura | @ciura_victor

std::optional<T>

optional<T> extends T's ordering operations:

< > <= >=

an empty optional compares as less than any optional that contains a T

=> you can use it in some contexts exactly as if it were a T.

�882018 Victor Ciura | @ciura_victor

std::optional<T>

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

Write waaaaay less error checking code

Do you see where this is going ?

�892018 Victor Ciura | @ciura_victor

std::optional<T>
[optional.monadic]

The `M` word

map() / and_then() / or_else()
chaining

https://wg21.tartanllama.xyz/monadic-optional

>>=

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

https://wg21.tartanllama.xyz/monadic-optional

�902018 Victor Ciura | @ciura_victor

std::optional<T &>

operator==

😱

But, wait...

�912018 Victor Ciura | @ciura_victor

std::optional<T &>

operator==

🗣
🗣

rebind

over by dead body !

🤔

🗣
shallow compare

�922018 Victor Ciura | @ciura_victor

“The class template basic_string_view describes an object that
can refer to a constant contiguous sequence of char-like objects.”

std::string_view

A string_view does not manage the storage that it refers to.

Lifetime management is up to the user (caller).

�932018 Victor Ciura | @ciura_victor

Enough string_view
to hang ourselves

http://sched.co/FnL6

CppCon 2018

I have a whole talk just on C++17 std::string_view

http://sched.co/FnL6

�94

- Arthur O’Dwyer

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

std::string_view

〝

2018 Victor Ciura | @ciura_victor

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�95

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

string_view succeeds admirably in the goal of

“drop-in replacement” for const string& parameters.⚠

The problem:

The two relatively old kinds of types are object types and value types.

The new kid on the block is the borrow type.

2018 Victor Ciura | @ciura_victor

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�96

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

Borrow types are essentially “borrowed” references to existing objects.

• they lack ownership

• they are short-lived

• they generally can do without an assignment operator

• they generally appear only in function parameter lists

• they generally cannot be stored in data structures or returned safely
from functions (no ownership semantics)

2018 Victor Ciura | @ciura_victor

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�97

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

string_view is perhaps the first “mainstream” borrow type.

BUT:

 string_view is assignable: sv1 = sv2

Assignment has shallow semantics (of course, the viewed strings are immutable).

Meanwhile, the comparison sv1 == sv2 has deep semantics.

2018 Victor Ciura | @ciura_victor

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�982018 Victor Ciura | @ciura_victor

std::string_view

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

Non-owning reference type

Generally, when used properly (as function parameter),

string_view works well..., as if a Regular type

�992018 Victor Ciura | @ciura_victor

std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

I give you std::span

the very confusing type that the world’s best C++

experts are not quite sure what to make of

🤦

https://en.cppreference.com/w/cpp/container/span

�1002018 Victor Ciura | @ciura_victor

std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

Think "array_view" as in std::string_view,
but mutable on underlying data

😱

https://en.cppreference.com/w/cpp/container/span

�1012018 Victor Ciura | @ciura_victor

std::span<T>C++20

https://cor3ntin.github.io/posts/span/Photo credit: Corentin Jabot
📖

https://cor3ntin.github.io/posts/span/

�1022018 Victor Ciura | @ciura_victor

Non-owning reference types

like string_view or span

You need more contextual information when working
on an instance of this type

Things to consider:

shallow copy

shallow/deep compare

const/mutability

operator==

�1032018 Victor Ciura | @ciura_victor

📯 Call To Action

Make your value types Regular

The best Regular types are those that model built-ins
most closely and have no dependent preconditions.

Think int or std::string

�1042018 Victor Ciura | @ciura_victor

📯 Call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

Try to restrict these types to SemiRegular

to avoid confusion for your users

�1052018 Victor Ciura | @ciura_victor

This was the most fun talk I had to write
🤓

Mainly because of some wonderful people,

that wrote excellent articles about this topic

I want to thank all of them 👏

and encourage you to read their work

📖

�1062018 Victor Ciura | @ciura_victor

📖 References I encourage you to study

Alexander Stapanov, Paul McJones
Elements of Programming (2009)

http://elementsofprogramming.com

Alexander Stapanov, James C. Dehnert
Fundamentals of Generic Programming (1998)

http://stepanovpapers.com/DeSt98.pdf

Alexander Stepanov
STL and Its Design Principles - presented at Adobe Systems Inc., January 30, 2002

https://www.youtube.com/watch?v=COuHLky7E2Q

http://stepanovpapers.com/stl.pdf

Bjarne Stroustrup, Andrew Sutton, et al.

A Concept Design for the STL (2012)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

http://elementsofprogramming.com
http://stepanovpapers.com/DeSt98.pdf
https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

�1072018 Victor Ciura | @ciura_victor

Titus Winters
Revisiting Regular Types

https://abseil.io/blog/20180531-regular-types

Corentin Jabot (cor3ntin)
A can of span

https://cor3ntin.github.io/posts/span/

Christopher Di Bella
Prepping Yourself to Conceptify Algorithms

https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html

Tony Van Eerd
Should Span be Regular?

http://wg21.link/P1085

📖 References I encourage you to study

https://abseil.io/blog/20180531-regular-types
https://cor3ntin.github.io/posts/span/
https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html
http://wg21.link/P1085

�1082018 Victor Ciura | @ciura_victor

Simon Brand

Functional exceptionless error-handling with optional and expected

https://blog.tartanllama.xyz/optional-expected/

Spaceship Operator

https://blog.tartanllama.xyz/spaceship-operator/

Monadic operations for std::optional

https://wg21.tartanllama.xyz/monadic-optional

📖 References I encourage you to study

https://blog.tartanllama.xyz/optional-expected/
https://blog.tartanllama.xyz/spaceship-operator/
https://wg21.tartanllama.xyz/monadic-optional

�1092018 Victor Ciura | @ciura_victor

Arthur O’Dwyer

Default-constructibility is overrated

https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/

Comparison categories for narrow-contract comparators

https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/

std::string_view is a borrow type

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

📖 References I encourage you to study

https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/
https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/
https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�1102018 Victor Ciura | @ciura_victor

Barry Revzin

Non-Ownership and Generic Programming and Regular types, oh my!

https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my

Should Span Be Regular?

https://medium.com/@barryrevzin/should-span-be-regular-6d7e828dd44

Implementing the spaceship operator for optional

https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

📖 References I encourage you to study

https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my-d35cd490d402
https://medium.com/@barryrevzin/should-span-be-regular-6d7e828dd44
https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

�1112018 Victor Ciura | @ciura_victor

Jonathan Müller

Mathematics behind Comparison

#1: Equality and Equivalence Relations

https://foonathan.net/blog/2018/06/20/equivalence-relations.html

#2: Ordering Relations in Math

https://foonathan.net/blog/2018/07/19/ordering-relations-math.html

#3: Ordering Relations in C++

https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html

#4: Three-Way Comparison

https://foonathan.net/blog/2018/09/07/three-way-comparison.html

📖 References I encourage you to study

https://foonathan.net/blog/2018/06/20/equivalence-relations.html
https://foonathan.net/blog/2018/07/19/ordering-relations-math.html
https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html
https://foonathan.net/blog/2018/09/07/three-way-comparison.html

�X

C++ Slack is your friend

CppLang Slack auto-invite:
https://cpplang.now.sh/

https://cpplang.slack.com

2018 Victor Ciura | @ciura_victor

�X

Rob Irving @robwirving

Jason Turner @lefticus

2018 Victor Ciura | @ciura_victor

�X

Jon Kalb @_JonKalb

Phil Nash @phil_nash

http://cpp.chat

https://www.youtube.com/channel/UCsefcSZGxO9lTBqFbsV3sJg/

https://overcast.fm/itunes1378325120/cpp-chat

2018 Victor Ciura | @ciura_victor

Victor Ciura
Technical Lead, Advanced Installer
www.advancedinstaller.com

September, 2018

Regular Types
and

Why Do I Care ?

@ciura_victor

http://www.advancedinstaller.com
https://twitter.com/ciura_victor

�X2018 Victor Ciura | @ciura_victor

Bonus Slides

�X2018 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

One particularly sensitive topic about handling C++ values

is that they are all conservatively considered non-relocatable.

�X2018 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory.

For example, an int32 is relocatable because moving its 4 bytes would preserve its
actual value, so the address of that value does not matter to its integrity.

�X2018 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�X2018 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

C++'s assumption of non-relocatable values hurts everybody

for the benefit of a few questionable designs.

�X2018 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

Only a minority of objects are genuinely non-relocatable:

- objects that use internal pointers

- objects that need to update observers that store pointers to them

�X

Questions

🗣
@ciura_victor

2018 Victor Ciura | @ciura_victor

