COon

the c++ conference

Regular Types
and
Why Do | Care ?

September, 2018

Victor Ciura
Technical Lead, Advanced Installer
www.advancedinstaller.com



http://www.advancedinstaller.com

Abstract

“Regular” is not exactly a new concept (pun intended). If we reflect back on STL and its design principles, as
best described by Alexander Stepanov in his 1998 “Fundamentals of Generic Programming” paper or his
lecture on this topic, from 2002, we see that regular types naturally appear as necessary foundational concepts
iNn programming.

Why do we need to bother with such taxonomies ? Well, the STL now informally assumes such properties
about the types it deals with and imposes such conceptual requirements for its data structures and algorithms
to work properly. The new Concepts Lite proposal (hopefully part of C++20) is based on precisely defined
foundational concepts such as Semiregular, Regular, EqualityComparable, DefaultConstructible,
LessThanComparable (strict weak ordering), etc. Formal specification of concepts is an ongoing effort in the
ISO C++ Committee and these STL library concepts requirements are being refined as part of Ranges TS
proposal (<experimental/ranges/concepts>).

Recent STL additions such as string_view, tuple, reference_wrapper, as well as new incoming types for C+
+20 like std::span raise new questions regarding values types, reference types and non-owning “borrow”
types.

Designing and implementing regular types is crucial in everyday programing, not just library design. Properly
constraining types and function prototypes will result in intuitive usage; conversely, breaking subtle contracts
for functions and algorithms will result in unexpected behavior for the caller.

This talk will explore the relation between Regular types (and other concepts) and STL containers &
algorithms with examples, common pitfalls and guidance.

2018 Victor Ciura | @ciura_victor X




5

Advanced Installer

2018 Victor Ciura | @ciura_victor



h  Simon Brand @TlartanlLlama - Jul 6 Vs
¥ So this happened
#CppCon

imgfip.com ‘\ “

2018 Victor Ciura | @ciura_victor







Monday, September 24

11:00 Manage

Tuesday, September 25

You are here ---> 09:00 - Regular Types and Why Do | Care ? Manage

'

Victor Ciura

Wednesday, September 26

Thursday, September 27

09:00

2018 Victor Ciura | @ciura_victor



Regular Types
and
Why Do | Care ?

© Part 1 of N




Why Regular types ?

Why are we talking about this ?

Have we really exhausted all the
cool C++ template<> topics & ?




This talk is not just about Regular types

A moment to reflect back on STL and its design principles, as best described

by Alexander Stepanov in his 1998 “Fundamentals of Generic Programming”

paper or his lecture on this topic, from 2002.

2018 Victor Ciura | @ciura_victor



This talk is not just about Regular types

We shall see that regular types naturally appear as necessary foundational
concepts in programming and try to investigate how these requirements fit in

the ever expanding C++ standard, bringing new data structures & algorithms.

2018 Victor Ciura | @ciura_victor



This talk is not just about Regular types

Values

Objects
Concepts
Ordering Relations

Requirements

2018 Victor Ciura | @ciura_victor



Titus Winters
Modern C++ API Design

-

- ———ee e e

owrens | o

Modern C++ API Design, pt 1

http://sched.co/FnLO

Titus Winters (titus@google.com) &
o5

Google

Modern C++ API Design, pt 1 Modern C++ API Design, pt 1

mwnm(&m‘
H x

2018 Victor Ciura | @ciura_victor


http://sched.co/FnLO

Titus Winters
Modern C++ API Design

Type Properties Type Families
What properties can we use to What combinations of type
describe types ? properties make useful / good

type designs ?

http://sched.co/FnLO

2018 Victor Ciura | @ciura_victor


http://sched.co/FnLO

Let's start with the basics...

2018 Victor Ciura | @ciura_victor



#define
Datum

A datum is a finite sequence of Os and 1s

2018 Victor Ciura | @ciura_victor



#define
Value Type

A value type Is a correspondence between

a species (abstract/concrete) and a set of datums.

2018 Victor Ciura | @ciura_victor



#define
Value

Value is a datum together with its interpretation.

EQ.

an integer represented in 32-bit two's complement, big endian

A value cannot change.

2018 Victor Ciura | @ciura_victor



Value Type & Equality

Lemma 1
If a value type is uniquely represented,

equality implies representational equality.

Lemma 2
If a value type is not ambiguous,

representational equality implies equality.

2018 Victor Ciura | @ciura_victor



#define
Object

An object is a representation of a concrete entity as a value

iIn computer memory (address & length).

An object has a state that is a value of some value type.

The state of an object can change.

2018 Victor Ciura | @ciura_victor



#define
Type

Type Is a set of values with the same interpretation function

and operations on these values.

2018 Victor Ciura | @ciura_victor



#define
Concept

A concept is a collection of similar types.

2018 Victor Ciura | @ciura_victor



2018 Victor Ciura | @ciura_victor



2018 Victor Ciura | @ciura_victor

Foundations

Transformations and Their Orbits
Associative Operations

Linear Orderings

Ordered Algebraic Structures
lterators

Coordinate Structures
Coordinates with Mutable Successors
Copying

Rearrangements

Partition and Merging

Composite Objects

21



2018 Victor Ciura | @ciura_victor



ALEXANDER
 Egyptian multiplication ~ 1900-1650 BC DANIEL E. R

* Ancient Greek number theory
* Prime numbers

* Euclid’s GCD algorithm

* Abstraction in mathematics

* Deriving generic algorithms

» Algebraic structures MATH EMATI C S\

 Programming concepts

* Permutation algorithms G E N E R I C \
* Cryptology (RSA) ~ 1977 AD P ROG RAMMI N G \

2018 Victor Ciura | @ciura victor




BERT
Lectures on the Foundations
of Geometry 1891-1902

/

‘ Am y »
/\'l‘\!‘-..”.ﬂl.))nta . WY, >

‘
o Analyss of the lnfiale
Lo - o

o Amadvun of the |nflastc
-

RUMELRS LA BEomi’Ry

b o f®rre - n g a ‘

LI A e

the ct++ conference

2014

ViICTOr Cilura ZClura_victlor



Where am | going with this ?

2018 Victor Ciura | @ciura_victor



Mathematics Really Does Matter

:'7Y71|ll|| n h
i ‘ llul- —
y '\Y‘""'

sty
LN )

- “ro: 3

GCD

One simple algorithm,
refined and improved
over 2,500 years,
while advancing
human understanding
of mathematics

SmartFriends U
September 27, 2003

P Pl o) 36:06/1:56:22

Greatest Common Measure: The Last 2500 Years https://www.youtube.com/watch?v=fanms5y00joc

2018 Victor Ciura | @ciura_victor


https://www.youtube.com/watch?v=fanm5y00joc

Mathematics Really Does Matter

W\
To those who do not know mathematics it is difficult to

get across a real feeling as to the beauty, the deepest
beauty, of nature ...

If you want to learn about nature, to appreciate nature,
It IS necessary to understand the language that she
speaks in.

Richard Feynman

2018 Victor Ciura | @ciura_victor




all Hold on !
Ul

'I've been programming for over N years,
and |'ve never needed any math to do It.
I'll be just fine, thank you."

2018 Victor Ciura | @ciura_victor



First of all:  / don't believe you @

The reason things just worked for you
Is that other people thought long and hard
about the details of the type system
and the libraries you are using

.. such that it feels natural and intuitive to you

2018 Victor Ciura | @ciura_victor



Stay with me !

I'm going somewhere with this...

2018 Victor Ciura | @ciura_victor



Three Algorithmic Journeys

Objectives

-

-

4 P >l o) 1002/ 46:46 ' @ ¢ .60 Lectures presented at
A9
Spoils of the Egyptians: Lecture 1 Part 1 https://www.youtube.com/watch?v=wrmXDxn Zuc 2012

2018 Victor Ciura | @ciura_victor



https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

Three Algorithmic Journeys

l. Spoils of the Egyptians (10h)
How elementary properties of commutativity and associativity of addition and
multiplication led to fundamental algorithmic and mathematical discoveries.

Il. Heirs of Pythagoras (12h)
How division with remainder led to discovery of many fundamental
abstractions.

lll. Successors of Peano (10h)
The axioms of natural numbers and their relation to iterators.

Lectures presented at

A9

https://www.youtube.com/watch?v=wrmXDxn Zuc 2012

2018 Victor Ciura | @ciura_victor


https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

It all leads up to...

2018 Victor Ciura | @ciura_victor



Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

\\\
Generic programming depends on the decomposition of programs

iInto components which may be developed separately and

combined arbitrarily, subject only to well-defined interfaces.

2018 Victor Ciura | @ciura_victor


http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

)\
Among the interfaces of interest, the most pervasively and unconsciously used,

are the fundamental operators common to all C++ built-in types, as extended

to user-defined types, e.qg. copy constructors, assignment, and equality.

2018 Victor Ciura | @ciura_victor


http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

\
We must investigate the relations which must hold among these operators

to preserve consistency with their semantics for the built-in types and

with the expectations of programmers.

2018 Victor Ciura | @ciura_victor


http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

We can produce an axiomatization of these operators which:

~ vyields the required consistency with built-in types
-~ matches the intuitive expectations of programmers

~ reflects our underlying mathematical expectations

2018 Victor Ciura | @ciura_victor


http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

In other words:

We want a foundation powerful enough to support

any sophisticated programming tasks, but simple and intuitive to reason about.

2018 Victor Ciura | @ciura_victor


http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming

Is simplicity a good goal ?

We're C++ programmers, are we not ?

O,

New

2018 Victor Ciura | @ciura_victor



—

What Is Your Relationship With C++7?

e Full Time
* Part Time

e Student

* It's complicated

P »l o) 046/2:02:00

Kate Gregory - It's Complicated - Meeting C++ 2017 Keynote

https://www.youtube.com/watch?v=tTexD26jIN4

018 Victor Ciura | @ciura victor 4l


https://www.youtube.com/watch?v=tTexD26jIN4

Is simplicity a good goal ?

~ Simpler code is more readable code
- Unsurprising code is more maintainable code
~ Code that moves complexity to abstractions often has less bugs (eg. vector, RAIl)

-~ Compilers and libraries are often much better than you

Kate Gregory, “lt’s Complicated”, Meeting C++ 2017

2018 Victor Ciura | @ciura_victor 41



Simplicity is Not Just for Beginners

~ Requires knowledge (language, idioms, domain)
- Simplicity is an act of generosity (to others, to future you)

< Not about skipping or leaving out

Kate Gregory, “lt’s Complicated”, Meeting C++ 2017

2018 Victor Ciura | @ciura_victor 42



Revisiting Regular Types
(after 20 years)
https://abseil.io/blog/20180531-reqgular-types
Titus Winters, 2018

Evokes the Anna Karenina principle to designing C++ types:

\
Good types are all alike; every poorly designed type is poorly defined in its own way.

- adapted with apologies to Leo Tolstoy

2018 Victor Ciura | @ciura_victor


https://abseil.io/blog/20180531-regular-types

Revisiting Regular Types
(after 20 years)
https://abseil.io/blog/20180531-reqgular-types
Titus Winters, 2018

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

This analysis provides us some basis to evaluate non-owning reference parameters types

(like string_view and span) in a practical fashion, without discarding Regular design.

2018 Victor Ciura | @ciura_victor


https://abseil.io/blog/20180531-regular-types

Let's go back to the roots...

STL and Its Design Principles

2018 Victor Ciura | @ciura_victor



STL and Its Design Principles

Talk presented at Adobe Systems Inc.
January 30, 2002

http://stepanovpapers.com/stl.pdf

> > o) 811/1:39:24 @& O]

Alexander Stepanov: STL and Its Design Principles https://www.youtube.com/watch?v=COuHLky/E2Q

2018 Victor Ciura | @ciura_victor



https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

STL and Its Design Principles

Fundamental Principles

- Systematically identifying and organizing useful algorithms and data structures

- Finding the most general representations of algorithms
-~ Using whole-part value semantics for data structures

~ Using abstractions of addresses as the interface between algorithms and data structures

2018 Victor Ciura | @ciura_victor



STL and Its Design Principles

- algorithms are associated with a set of common properties
Eg. { +, *, miln, max } => associative operations

=> reorder operands
=> parallelize + reduction (std: :accumulate)

~ natural extension of 4,000 years of mathematics

~ exists a generic algorithm behind every while() or for() loop

2018 Victor Ciura | @ciura_victor



STL and Its Design Principles

STL data structures

- STL data structures extend the semantics of C structures
~ two objects never intersect (they are separate entities)

- two objects have separate lifetimes

2018 Victor Ciura | @ciura_victor




STL and Its Design Principles

STL data structures have whole-part semantics

- copy of the whole, copies the parts
-~ when the whole is destroyed, all the parts are destroyed

~ two things are equal when they have the same number of parts

and their corresponding parts are equal

2018 Victor Ciura | @ciura_victor




STL and Its Design Principles

Generic Programming Drawbacks

© abstraction penalty (rarely)

~ Implementation in the interface

~ early binding

~ horrible error messages (no formal specification of interfaces, yet)
© duck typing

~ algorithm could work on some data types, but fail to work/compile

on some other new data structures (different iterator category, no copy semantics, etc)

" We need to fully specify requirements on algorithm types.

2018 Victor Ciura | @ciura_victor



Named Requirements
Examples from STL.:
DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible
EqualityComparable, LessThanComparable
Predicate, BinaryPredicate
Compare
FunctionObject
Container, SequenceContainer, ContiguousContainer, AssociativeContainer
Inputlterator, Outputlterator

ForwardIterator, Bidirectionallterator, RandomAccessIterator

https://en.cppreference.com/w/cpp/named reg

2018 Victor Ciura | @ciura_victor 52


https://en.cppreference.com/w/cpp/named_req

Named Requirements

Named requirements are used in the normative text of the C++ standard to define the
expectations of the standard library.

Some of these requirements are being formalized in C++20 using concepts.

Until then, the burden is on the programmer to ensure that library templates are
instantiated with template arguments that satisfy these requirements.

https://en.cppreference.com/w/cpp/named reqg

2018 Victor Ciura | @ciura_victor 53


https://en.cppreference.com/w/cpp/named_req

What Is A Concept, Anyway ?

Formal specification of concepts makes it possible to verify that template arguments
satisfy the expectations of a template or function during overload resolution and
template specialization (requirements).

Each concept is a predicate, evaluated at compile time, and becomes a part of the
interface of a template where it is used as a constraint.

https://en.cppreference.com/w/cpp/language/constraints

2018 Victor Ciura | @ciura_victor


https://en.cppreference.com/w/cpp/language/constraints

What's the Practical Upside ?

If I'm not a library writer ,
Why Do | Care ?

2018 Victor Ciura | @ciura_victor



What's the Practical Upside ?

Using STL algorithms & data structures

Designing & exposing your own vocabulary types
(interfaces, APIs)

2018 Victor Ciura | @ciura_victor



| need to tell you a story...

2018 Victor Ciura | @ciura_victor



Let's explore one popular STL algorithm

... and Its requirements

std: :sort()

2018 Victor Ciura | @ciura_victor



Compare Concept

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

Why is this one special ?
Because ~50 STL facilities (algorithms & data structures) expect some Compare type.

EQ.

template<class RandomIt, class Compare>
constexpr void sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_reg/Compare

2018 Victor Ciura | @ciura_victor 59


https://en.cppreference.com/w/cpp/named_req/Compare

Compare Concept

What are the requirements for a Compare type ?

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

bool comp(*1iterl, *iter?2);

But what kind of ordering relationship is needed for the e/lements of the collection ?

https://en.cppreference.com/w/cpp/named_reg/Compare

2018 Victor Ciura | @ciura_victor 60


https://en.cppreference.com/w/cpp/named_req/Compare

Compare Concept

f\__
00

But what kind of ordering relationship is needed " =

Irreflexivity

Transitivity

év a, comp(a,a)==false

v a, b, ¢, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

{ Partial ordering }

https://en.wikipedia.org/wiki/Partially ordered set

2018 Victor Ciura | @ciura_victor




Compare Examples

vector<string> v ={ ... }; V

sort(v.begin(), v.end());

sort(v.begin(), v.end(), less<>());

sort(v.begin(), v.end(), [](Cconst string & sl, const string & s2)
{

return sl < sZ;

1)

sort(v.begin(), v.end(), [](const string & sl, const string & s2)

{
return stricmp(sl.c_str(), sZ2.c_str()) < 0;

1)

2018 Victor Ciura | @ciura_victor



Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & pl, const Point & p2)

{
return (pl.x < p2.x) && (pl.y < p2.y);
5);

Is this a good Compare predicate for 2D points ?

2018 Victor Ciura | @ciura_victor



Compare Examples

Let { P1, P2, P3 }
x1l < x2; yl > y2;
x1l < x3; yl > y3;
X2 < X3; y2 < y3;

auto comp = [](const Point & pl,
const Point & p2)

{
return (pl.x < p2.x) 8& (pL.y < p2.y);

¥

=>

P2 and P1 are unordered (P2 7 P1) | comp(P2,Pl)==false && comp(P1l,P2)==false
P1 and P3 are unordered (P1 7 P3) | comp(Pl,P3)==false && comp(P3,Pl)==false
P2 and P3 are ordered (P2 < P3) | comp(P2,P3)==true && comp(P3,P2)==false

2018 Victor Ciura | @ciura_victor 64



Compare Examples

Definition:

1t comp(a,b)==false &_& comp(b,a)==false
=> d and b are equivalent

L ——— e ——e— — —— e g——— T ———

auto comp = [](const Point & pl,
const Point & p2)

1
¥

=>

return (pl.x < p2.x) 8& (pL.y < p2.y);

P2 1s equivalent to P1
P1 1s equivalent to P3
P2 1s less than P3

2018 Victor Ciura | @ciura_victor




Compare Concept

~
o

-—

Partial ordering relationship is not enough "' =

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

2018 Victor Ciura | @ciura_victor



Strict weak ordering

https://en.wikipedia.org/wiki/Weak ordering#Strict weak orderings

Irreflexivity v a, comp(a,a)==false

éV a, b, ¢, 1f comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

ransitivity of v a, b, ¢, 1f equiv(a,b)==true and equiv(b,c)==true
equivalence  => equiv(a,c)==true

ransitivity

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

2018 Victor Ciura | @ciura_victor


https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Total ordering relationship

comp() induces a strict total ordering
on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes
partition the elements of the set,
and are totally ordered by <

https://en.wikipedia.org/wiki/Weak ordering#Strict weak orderings

2018 Victor Ciura | @ciura_victor


https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Compare Examples

struct Point { 1nt x; 1nt y; }; V

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & pl, const Point & p2)
{

// compare distance from origin
return (pl.x * pl.x + pl.y * pl.y) <
(p2.x * p2.x + p2.y * p2.y);
13

Is this a good Compare predicate for 2D points ?

2018 Victor Ciura | @ciura_victor



Compare Examples

struct Point { 1nt x; 1nt y; }; J

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & pl, const Point & p2)

1
1f (pl.x < p2.x) return true;

1f (p2.X < pl.x) return false;

return pl.y < p2.y;
1),

Is this a good Compare predicate for 2D points ?

2018 Victor Ciura | @ciura_victor



Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.

(we first compared by X coordinate, and then by Y coordinate for equivalent X)

This strategy is analogous to how a dictionary works,

so it iIs often called dictionary order or lexicographical order.

std: :pair<T, U> defines the six comparison operators
iIn terms of the corresponding operators of the pair's components

2018 Victor Ciura | @ciura_victor



Named ReqUirementS http://wg21.link/p0898

Examples from STL.:

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignhable, CopyAssignable, Swappable

Destructible

EqualityComparable, LessThanComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer
InputIterator, Outputlterator

ForwardIterator, Bidirectionallterator, RandomAccessIterator

https://en.cppreference.com/w/cpp/named reqg

2018 Victor Ciura | @ciura_victor 72


https://en.cppreference.com/w/cpp/named_req
http://wg21.link/p0898

#define SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible

http://wg21.link/p0898

2018 Victor Ciura | @ciura_victor £


http://wg21.link/p0898

#define Regular

(aka "Stepanov Regular")

SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible

-t

EqualityComparable

http://wg21.link/p0898

2018 Victor Ciura | @ciura_victor 74


http://wg21.link/p0898

Regular

(aka "Stepanov Regular")

STL assumes equality is always defined (at least, equivalence relation)

STL algorithms assume Regu lar data structures

http://wg21.link/p0898

2018 Victor Ciura | @ciura_victor 75


http://wg21.link/p0898

LessThanComparable 1=:

év a, b, ¢, 1f (a < b)==true and (b < c)==true
=> (a < c)==true

Transitivity of év a, b, ¢, 1f equiv(a,b)==true and equiv(b,c)==true
equivalence  => equiv(a,c)==true

Transitivity

where:

equiv(a,b) : (a < b)==false && (b < a)==false

https://en.cppreference.com/w/cpp/named reg/LessThanComparable

2018 Victor Ciura | @ciura_victor 76


https://en.cppreference.com/w/cpp/named_req/LessThanComparable

EqualityComparable

Reflexivity v a, (a == a)==true

......................................................................................................................................................................................................................................................................................................................................................................................................................

Symmetry v a, b, 1f (a == b)==true => (b == a)==true

év a, b, ¢, 1f (a == b)==true and (b == c)==true

Transitivity = (@ == C)==true

The type must work with operator== and the result should have standard semantics.

https://en.wikipedia.org/wiki/Equivalence relation https://en.cppreference.com/w/cpp/named reqa/EqualityComparable

2018 Victor Ciura | @ciura_victor 77


https://en.cppreference.com/w/cpp/named_req/EqualityComparable
https://en.wikipedia.org/wiki/Equivalence_relation

Equality vs. Equivalence

For the types that are both EqualityComparable and LessThanComparable,
the C++ standard library makes a clear distinction between equality and equivalence

where:

equalCa,b) : (a == b)
equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

Equality is both an equivalence relation and a partial order.

2018 Victor Ciura | @ciura_victor




Equality vs. Equivalence

Logicians might define equality via the following equivalence:

a==Db & v predicate P, P(a) == P(b)

But this definition is not very practical in programming :(

2018 Victor Ciura | @ciura_victor



Equality

Defining equality is hard @

2018 Victor Ciura | @ciura_victor



Equality

Ultimately, Stepanov proposes the following definition™:

™ Two objects are equal if their corresponding parts are equal (applied recursively),
including remote parts (but not comparing their addresses), excluding inessential

components, and excluding components which identify related objects.

* “although it still leaves room for judgement” http://stepanovpapers.com/DeSt98.pdf

2018 Victor Ciura | @ciura_victor 81


http://stepanovpapers.com/DeSt98.pdf

Mandatory Slide

Gauging the audience...

C++98/03 C++11 C++17

2018 Victor Ciura | @ciura_victor



a C++20 Three-way comparison

Bringing consistent comparison operations...

operator <=>

(a<=>Db) < 0 1f a<b
(a<=>Db)> 0 1f a>Db
(a <=>b) == 0 1f a and b are equal/equivalent

http://wg21.link/p0515

2018 Victor Ciura | @ciura_victor 83


http://wg21.link/p0515

a C++20 Three-way comparison

The comparison categories for: operator <=>

“« partial ordering
weak _equality T
< weak ordering
T )
strong_equality < strong_ordering

It's all about relation strength L

2018 Victor Ciura | @ciura_victor



a C++20 Three-way comparison

Wish list for: Operator<=>

| would like to see <=> implemented for all STL vocabulary types.

std: :string
std::string_view
std: :optional
std: :span

But, we need to let the dust settle a bit,
so that we have time to really get practical experience with it...

2018 Victor Ciura | @ciura_victor



std: :optional<T>

Any time you need to express:

- value or not value
- pOSSIibly an answer
- object with delayed initialization

Using a common vocabulary type for these cases raises the level of abstraction,
making it easier for others to understand what your code is doing.

2018 Victor Ciura | @ciura_victor




std: :optional<T>

optional<T> extends T's ordering operations:

< > <= >=

an empty optional compares as less than any optional that contains a T

=> you can use it in some contexts exactly as if it were a T.

2018 Victor Ciura | @ciura_victor



std: :optional<T>

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

Write waaaaay less error checking code

Do you see where this is going ?

2018 Victor Ciura | @ciura_victor



[optional.monadic]

std: :optional<T>

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

The M word

map() / and_then() / or_else() >>=
chaining

https://wg21.tartanllama.xyz/monadic-optional

2018 Victor Ciura | @ciura_victor


https://wg21.tartanllama.xyz/monadic-optional

But, wait...

std: :optional<T &>

S,

operator==

2018 Victor Ciura | @ciura_victor



std: :optional<T &>

shallow compare

operator==

7\

over by dead body !

)
)

\ |/

/|

2018 Victor Ciura | @ciura_victor



std: :string_view

“The class template bas1c_string_view describes an object that
can refer to a constant contiguous sequence of char-like objects.”

A string_v1iew does not manage the storage that it refers to.

Lifetime management is up to the user (caller).

2018 Victor Ciura | @ciura_victor



| have a whole talk just on C++17 std: :string_view

Enough string_view
to hang ourselves

CppCon 2018
http://sched.co/FnlL6

2018 Victor Ciura | @ciura_victor


http://sched.co/FnL6

std: :string_view

Y std::string_view is a borrow type

- Arthur O’Dwyer

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

2018 Victor Ciura | @ciura_victor


https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std: :string_viewis a borrow type

| string_view succeeds admirably in the goal of
“drop-in replacement” for const string& parameters.

The problem:
The two relatively old kinds of types are object types and value types.

The new Kkid on the block is the borrow type.

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

2018 Victor Ciura | @ciura_victor


https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std: :string_viewis a borrow type

Borrow types are essentially “borrowed” references to existing objects.
* they lack ownership

* they are short-lived

e they generally can do without an assignment operator

* they generally appear only in function parameter lists

* they generally cannot be stored in data structures or returned safely
from functions (no ownership semantics)

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

2018 Victor Ciura | @ciura_victor


https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std: :string_viewis a borrow type

string_view is perhaps the first “mainstream” borrow type.

BUT:

string_view is assignable: svl = sv/

Assignment has shallow semantics (of course, the viewed strings are immutable).

Meanwhile, the comparison sv1l == sVv/ has deep semantics.

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

2018 Victor Ciura | @ciura_victor


https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std: :string_view

Non-owning reference type

When the underlying data is extant and constant
we can determine whether the rest of its usage still looks Regular

Generally, when used properly (as function parameter),
string_view works well..., as if a Regular type

2018 Victor Ciura | @ciura_victor



€++20 sStd::span<Tl>

| give you std: :span
the very confusing type that the world’s best C++
experts are not quite sure what to make of

:T;:ﬁ

https://en.cppreference.com/w/cpp/container/span

2018 Victor Ciura | @ciura_victor 99


https://en.cppreference.com/w/cpp/container/span

C++20 sStd::span<l>

Think "array_view" asin std::string_view,
but mutable on underlying data

.

https://en.cppreference.com/w/cpp/container/span

2018 Victor Ciura | @ciura_victor 100


https://en.cppreference.com/w/cpp/container/span

€++20 sStd::span<Tl>

Photo credit: Corentin Jabot https://cor3ntin.github.io/posts/span/

2018 Victor Ciura | @ciura_victor 101


https://cor3ntin.github.io/posts/span/

Non-owning reference types
ike string_view or span

You need more contextual information when working
on an instance of this type

Things to consider:

- shallow copy

~ shallow/deep compare
~ const/mutability

~ operator==

2018 Victor Ciura | @ciura_victor



Q Call To Action

Make your value types Regular

The best Regular types are those that model built-1ns
most closely and have no dependent preconditions.

Think 1nt or std: :string

2018 Victor Ciura | @ciura_victor



Q Call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

Try to restrict these types to SemiRegular
to avoid confusion for your users

2018 Victor Ciura | @ciura_victor



This was the most fun talk | had to write

@9

Mainly because of some wonderful people,
that wrote excellent articles about this topic

| want to thank all of them Q\
and encourage you to read their work

2018 Victor Ciura | @ciura_victor



- References | encourage you to study

Alexander Stapanov, Paul McJones
Elements of Programming (2009)
http://elementsofprogramming.com

Alexander Stapanov, James C. Dehnert
Fundamentals of Generic Programming (1998)
http://stepanovpapers.com/DeSt98. pdf

Alexander Stepanov
STL and Its Design Principles - presented at Adobe Systems Inc., January 30, 2002
https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

Bjarne Stroustrup, Andrew Sutton, et al.
A Concept Design for the STL (2012)
http:.//www.open-std.org/|tc1/sc22/wg21/docs/papers/2012/n3351.pdf

2018 Victor Ciura | @ciura_victor


http://elementsofprogramming.com
http://stepanovpapers.com/DeSt98.pdf
https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

LI References | encourage you to study

Titus Winters
Revisiting Regular Types
https://abseil.io/blog/20180531-reqular-types

Corentin Jabot (cor3ntin)
A can of span
https://cor3ntin.github.io/posts/span/

Christopher Di Bella

Prepping Yourself to Conceptify Algorithms
https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html

Tony Van Eerd
Should Span be Regular?
http://wg21.link/P1085

2018 Victor Ciura | @ciura_victor


https://abseil.io/blog/20180531-regular-types
https://cor3ntin.github.io/posts/span/
https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html
http://wg21.link/P1085

41 References | encourage you to study

Simon Brand

Functional exceptionless error-handling with optional and expected
https.//blog.tartanllama.xyz/optional-expected/

Spaceship Operator
https.//blog.tartanllama.xyz/spaceship-operator/

Monadic operations for std::optional
https://wg21.tartanllama.xyz/monadic-optional

2018 Victor Ciura | @ciura_victor


https://blog.tartanllama.xyz/optional-expected/
https://blog.tartanllama.xyz/spaceship-operator/
https://wg21.tartanllama.xyz/monadic-optional

| References | encourage you to study

Arthur O’Dwyer

Default-constructibility is overrated
https://quuxplusone.github.io/blog/2018/05/10/reqular-should-not-imply-default-constructible/

Comparison categories for narrow-contract comparators
https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/

std::string_view is a borrow type
https://quuxplusone.qgithub.io/blog/2018/03/27/string-view-is-a-borrow-type/

2018 Victor Ciura | @ciura_victor


https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/
https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/
https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

41 References | encourage you to study

Barry Revzin

Non-Ownership and Generic Programming and Regular types, oh my!
https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my

Should Span Be Regular?
https://medium.com/@barryrevzin/should-span-be-reqular-6d7e828dd44

Implementing the spaceship operator for optional
https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6dSec

2018 Victor Ciura | @ciura_victor


https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my-d35cd490d402
https://medium.com/@barryrevzin/should-span-be-regular-6d7e828dd44
https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

41 References | encourage you to study

Jonathan Muller

Mathematics behind Comparison

1: Equality and Equivalence Relations
https.//foonathan.net/blog/2018/06/20/equivalence-relations.html

2. Ordering Relations in Math
https://foonathan.net/blog/2018/07/19/ordering-relations-math.html

3: Ordering Relations in C++
https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html

4: Three-Way Comparison
https:.//foonathan.net/blog/2018/09/07/three-way-comparison.html

2018 Victor Ciura | @ciura_victor


https://foonathan.net/blog/2018/06/20/equivalence-relations.html
https://foonathan.net/blog/2018/07/19/ordering-relations-math.html
https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html
https://foonathan.net/blog/2018/09/07/three-way-comparison.html

C++ Slack is your friend

https://cpplang.slack.com

CppLang Slack auto-invite:
https://cpplang.now.sh/

Cpplang

cpplang.slack.com

2018 Victor Ciura | @ciura_victor



[ CppCast

auto CppCast = pod_cast<C++>("http://cppcast.com”);

Rob Irving @robwirving

Jason Turner @lefticus

2018 Victor Ciura | @ciura_victor



http://cpp.chat

https://www.youtube.com/channel/UCsefcSZGxO9ITBqFbsV3sJg/

https://overcast.fm/itunes1378325120/cpp-chat

Jon Kalb @ JonKalb

Phil Nash @phil nash

2018 Victor Ciura | @ciura_victor



COon

the c++ conference

Regular Types
and
Why Do | Care ?

September, 2018

Victor Ciura
Technical Lead, Advanced Installer
www.advancedinstaller.com



http://www.advancedinstaller.com
https://twitter.com/ciura_victor

BONUS SLIDES |

2018 Victor Ciura | @ciura_victor



Object Relocation

One particularly sensitive topic about handling C++ values
IS that they are all conservatively considered non-relocatable.

https://qithub.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2018 Victor Ciura | @ciura_victor



Object Relocation

In contrast, a relocatable value would preserve Its invariant,
even If its bits were moved arbitrarily in memory.

For example, an 1nt32 is relocatable because moving its 4 bytes would preserve its
actual value, so the address of that value does not matter to its integrity.

https://qithub.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2018 Victor Ciura | @ciura_victor



Object Relocation

https://qgithub.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2018 Victor Ciura | @ciura_victor



Object Relocation

C++'s assumption of non-relocatable values hurts everybody
for the benefit of a few questionable designs.

https://qithub.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2018 Victor Ciura | @ciura_victor



Object Relocation

Only a minority of objects are genuinely non-relocatable:

- objects that use internal pointers
- objects that need to update observers that store pointers to them

https://qithub.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2018 Victor Ciura | @ciura_victor



Questions

2018 Victor Ciura | @ciura_victor



