
Victor Ciura
Principal Engineer

CAPHYON

A Short Life span＜＞
For a Regular Mess

@ciura_victor

https://twitter.com/ciura_victor

�X

Abstract
 By now you probably heard about “Regular Types and Why Do I Care” :) This would be Part 2 of the journey
we’ll take together, where we get a chance to explore std::span<T> through our Regular lens. Don’t worry if
you’ve missed Part 1; we’ll have plenty of time to revisit the important bits, as we prepare to span our grasp
into C++20.

 “Regular” is not exactly a new concept. If we reflect back on STL and its design principles, as best described
by Alexander Stepanov in his “Fundamentals of Generic Programming” paper, we see that regular types
naturally appear as necessary foundational concepts in programming. Why do we need to bother with such
taxonomies ? Because STL assumes such properties about the types it deals with and imposes such
conceptual requirements for its data structures and algorithms to work properly. C++20 Concepts are based on
precisely defined foundational type requirements such as Semiregular, Regular, EqualityComparable, etc.

 Recent STL additions such as std::string_view, std::reference_wrapper, std::optional, as well as new
incoming types for C++20 like std::span or std::function_ref raise new questions regarding values types,
reference types and non-owning “borrow” types. Designing and implementing regular types is crucial in
everyday programming, not just library design. Properly constraining types and function prototypes will result
in intuitive usage; conversely, breaking subtle contracts for functions and algorithms will result in unexpected
behavior for the caller.

 This talk will explore the relation between Regular types (and other concepts) and new STL additions like
std::span<T> with examples, common pitfalls and guidance.

2019 Victor Ciura | @ciura_victor

New venue,
same great C++ conference

2019

�3

�4

I have concerns...

�5

Victor Ciura
Principal Engineer

CAPHYON

A Short Life span＜＞
For a Regular Mess

@ciura_victor

https://twitter.com/ciura_victor

Who Am I ?

@ciura_victor

�X

Advanced Installer Clang Power Tools

2019 Victor Ciura | @ciura_victor

�72019 Victor Ciura | @ciura_victor

Regular Types
and

Why Do I Care ?
CppCon 2018 | Meeting C++ 2018 | ACCU 2019

🙋"

�8

Why are we talking about this ?

Why Regular types ?

2019 Victor Ciura | @ciura_victor

�9

This talk is not just about Regular types

2019 Victor Ciura | @ciura_victor

A moment to reflect back on STL and its design principles,

as best described by Alexander Stepanov in his 1998 paper

“Fundamentals of Generic Programming”

�102019 Victor Ciura | @ciura_victor

We shall see that Regular types naturally appear as necessary

foundational concepts in programming and try to investigate how these
requirements fit in the ever expanding C++ standard, bringing new data
structures & algorithms.

�11

This talk is not just about Regular types

2019 Victor Ciura | @ciura_victor

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes

C++17

C++20

C++23~

std::span
Cpp Core

Guidelines

�122019 Victor Ciura | @ciura_victor

Modern C++ API Design

Type Properties

What properties can we use to
describe types ?

Type Families

What combinations of type
properties make useful / good

type designs ?

Titus Winters - Modern C++ API Design

youtube.com/watch?v=tn7oVNrPM8I

https://www.youtube.com/watch?v=tn7oVNrPM8I

�132019 Victor Ciura | @ciura_victor

Let's start with the beginning...

~2,000 BC

😁

�142019 Victor Ciura | @ciura_victor

Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

Lectures presented at
A9

 2012

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

�152019 Victor Ciura | @ciura_victor

Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

I. Spoils of the Egyptians (10h)
How elementary properties of commutativity and associativity of addition and
multiplication led to fundamental algorithmic and mathematical discoveries.

II. Heirs of Pythagoras (12h)
How division with remainder led to discovery of many fundamental
abstractions.

III. Successors of Peano (10h)
The axioms of natural numbers and their relation to iterators.

Lectures presented at
A9

 2012

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

�162019 Victor Ciura | @ciura_victor

• 	Egyptian multiplication ~ 1900-1650 BC  

• 	Ancient Greek number theory 

• 	Prime numbers 

• 	Euclid’s GCD algorithm 

• 	Abstraction in mathematics 

• 	Deriving generic algorithms 

• 	Algebraic structures 

• 	Programming concepts 

• 	Permutation algorithms 

• 	Cryptology (RSA) ~ 1977 AD

�172019 Victor Ciura | @ciura_victor

In the beginning there were just 0s and 1s

😁

�18

Datum

2019 Victor Ciura | @ciura_victor

A datum is a finite sequence of 0s and 1s

#define

#EoP

�19

Value Type

2019 Victor Ciura | @ciura_victor

A value type is a correspondence between

a species (abstract/concrete) and a set of datums.

#define

#EoP

�20

Value

2019 Victor Ciura | @ciura_victor

Value is a datum together with its interpretation.

Eg.

an integer represented in 32-bit two's complement, big endian

A value cannot change.

#define

#EoP

�21

Value Type & Equality

2019 Victor Ciura | @ciura_victor

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

Lemma 2

If a value type is not ambiguous,

representational equality implies equality.

#EoP

�22

Object

2019 Victor Ciura | @ciura_victor

An object is a representation of a concrete entity as a value

in computer memory (address & length).

An object has a state that is a value of some value type.

The state of an object can change.

#define

#EoP

�23

Type

2019 Victor Ciura | @ciura_victor

Type is a set of values with the same interpretation function

and operations on these values.

#define

#EoP

�24

Concept

2019 Victor Ciura | @ciura_victor

A concept is a collection of similar types.

#define

#EoP

�252019 Victor Ciura | @ciura_victor

• 	Foundations

• Transformations and Their Orbits

• Associative Operations

• Linear Orderings

• Ordered Algebraic Structures

• Iterators

• Coordinate Structures

• Coordinates with Mutable Successors

• Copying

• Rearrangements

• Partition and Merging

• Composite Objects

http://elementsofprogramming.com

Free
PDF

http://elementsofprogramming.com

�262019 Victor Ciura | @ciura_victor

Mathematics Really Does Matter

https://www.youtube.com/watch?v=fanm5y00joc

SmartFriends U
 September 27, 2003

One simple algorithm,

refined and improved

over 2,500 years,

while advancing

human understanding

of mathematics

GCD

https://www.youtube.com/watch?v=fanm5y00joc

�272019 Victor Ciura | @ciura_victor

Hold on !

"I've been programming for over N years,
and I've never needed any math to do it.

I'll be just fine, thank you."
✋

�282019 Victor Ciura | @ciura_victor

The reason things just worked for you

is that other people thought long and hard

about the details of the type system

and the libraries you are using

... such that it feels natural and intuitive to you

�292019 Victor Ciura | @ciura_victor

4,000 years of mathematics

It all leads up to...

�302019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Generic programming depends on the decomposition of programs
into components which may be developed separately and

combined arbitrarily, subject only to well-defined interfaces.

〝

http://stepanovpapers.com/DeSt98.pdf

�312019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Among the interfaces of interest, the most pervasively and unconsciously used,

are the fundamental operators common to all C++ built-in types, as extended

to user-defined types, eg. copy constructors, assignment, and equality.

〝

http://stepanovpapers.com/DeSt98.pdf

�322019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

We must investigate the relations which must hold among these

operators to preserve consistency with their semantics for the

built-in types and with the expectations of programmers.

〝

http://stepanovpapers.com/DeSt98.pdf

�332019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

In other words:

We want a foundation powerful enough to support any sophisticated

programming tasks, but simple and intuitive to reason about.

http://stepanovpapers.com/DeSt98.pdf

�342019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

Is simplicity a good goal ?

We're C++ programmers, are we not ?

🤓

�352019 Victor Ciura | @ciura_victor

Fundamentals of Generic Programming

Is simplicity a good goal ?

I hate it when C++ programmers brag about being able to
reason about some obscure language construct,
proud as if they just discovered some new physical law

:(

�362019 Victor Ciura | @ciura_victor

Simpler code is more readable code

Unsurprising code is more maintainable code

Code that moves complexity to abstractions often has less bugs

Compilers and libraries are often much better than you

Simplicity is an act of generosity (to others, to future you)

Is simplicity a good goal ?

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

�372019 Victor Ciura | @ciura_victor

Revisiting Regular Types
(after 20 years)

Titus Winters, 2018

https://abseil.io/blog/20180531-regular-types

〝 Good types are all alike; every poorly designed type is poorly defined in its own way.

- adapted with apologies to Leo Tolstoy

Evokes the Anna Karenina principle to designing C++ types:

https://abseil.io/blog/20180531-regular-types

�382019 Victor Ciura | @ciura_victor

Revisiting Regular Types
(after 20 years)

Titus Winters, 2018

https://abseil.io/blog/20180531-regular-types

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

This analysis provides us some basis to evaluate non-owning reference

parameters types (like string_view and span) in a practical fashion,

without discarding Regular design.

https://abseil.io/blog/20180531-regular-types

�392019 Victor Ciura | @ciura_victor

Let's go back to the roots...

STL and Its Design Principles

�402019 Victor Ciura | @ciura_victor

STL and Its Design Principles

https://www.youtube.com/watch?v=COuHLky7E2Q

Talk presented at Adobe Systems Inc.
January 30, 2002

http://stepanovpapers.com/stl.pdf

https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

�412019 Victor Ciura | @ciura_victor

STL and Its Design Principles

Fundamental Principles

 Systematically identifying and organizing useful algorithms and data structures

 Finding the most general representations of algorithms

 Using whole-part value semantics for data structures

 Using abstractions of addresses (iterators) as the interface between algorithms and data structures

�422019 Victor Ciura | @ciura_victor

algorithms are associated with a set of common properties

 Eg. { +, *, min, max } => associative operations

 => reorder operands

 => parallelize + reduction

 C++98 std::accumulate()
 C++17 std::transform_reduce()

natural extension of 4,000 years of mathematics

exists a generic algorithm behind every while() or for() loop

STL and Its Design Principles

�432019 Victor Ciura | @ciura_victor

STL and Its Design Principles

STL data structures

 STL data structures extend the semantics of C structures

 two objects never intersect (they are separate entities)

 two objects have separate lifetimes

�442019 Victor Ciura | @ciura_victor

STL and Its Design Principles

STL data structures have whole-part semantics

 copy of the whole, copies the parts

 when the whole is destroyed, all the parts are destroyed

 two things are equal when they have the same number of parts

 and their corresponding parts are equal

�452019 Victor Ciura | @ciura_victor

STL and Its Design Principles

Generic Programming Drawbacks

abstraction penalty (rarely)

implementation in the interface

early binding

horrible error messages (no formal specification of interfaces, yet)

duck typing

algorithm could work on some data types, but fail to work/compile

 on some other new data structures (different iterator category, no copy semantics, etc)

👉 We need to fully specify requirements on algorithm types.

�462019 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Examples from STL:

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

EqualityComparable, LessThanComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

https://en.cppreference.com/w/cpp/named_req

�472019 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Named requirements are used in the normative text of the C++ standard to

define the expectations of the standard library.

Some of these requirements are being formalized in C++20 using concepts.

Until then, the burden is on the programmer to ensure that library templates are
instantiated with template arguments that satisfy these requirements.

https://en.cppreference.com/w/cpp/named_req

�482019 Victor Ciura | @ciura_victor

What Is A Concept, Anyway ?

Formal specification of concepts makes it possible to verify that template

arguments satisfy the expectations of a template or function during

overload resolution and template specialization (requirements).

https://en.cppreference.com/w/cpp/language/constraints

Each concept is a predicate, evaluated at compile time, and becomes a part

of the interface of a template where it is used as a constraint.

https://en.cppreference.com/w/cpp/language/constraints

�492019 Victor Ciura | @ciura_victor

https://wg21.link/p1754

Renaming concepts from Pascal/CamelCase to snake_caseC++20

https://wg21.link/p1754

�502019 Victor Ciura | @ciura_victor

https://wg21.link/p1754

Renaming concepts from Pascal/CamelCase to snake_case

Photo: @AdiShavit

With apologies to Antoine de Saint-Exupéry (The Little Prince)

Adults lack imagination...

C++20

https://wg21.link/p1754

�512019 Victor Ciura | @ciura_victor

https://wg21.link/p1754

Renaming concepts from Pascal/CamelCase to snake_case

I liked the original PascalCase because:

it’s desirable to make concepts Stand Out (they are policies rather than types)

confusion with type traits: 
eg. having both std::copy_constructible and std::is_copy_constructible
mean different things and give subtly different answers in some cases  
=> creates user confusion and pitfalls

of consistency with standard template parameters  
eg.

 template<class CharT, class Traits, class Allocator>
 class basic_string;

concepts are not types and should thus be named differently from standard types

C++20

https://wg21.link/p1754

�522019 Victor Ciura | @ciura_victor

What's the Practical Upside ?

If I'm not a library writer 🤓,

Why Do I Care ?

�532019 Victor Ciura | @ciura_victor

What's the Practical Upside ?

Using STL algorithms & data structures

Designing & exposing your own vocabulary types
(interfaces, APIs)

�542019 Victor Ciura | @ciura_victor

Using STL - Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

But what kind of ordering relationship is needed for the elements of the collection ?

🤔

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

�552019 Victor Ciura | @ciura_victor

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

Strict weak ordering

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

�562019 Victor Ciura | @ciura_victor

LessThanComparable
https://en.cppreference.com/w/cpp/named_req/LessThanComparable

Irreflexivity ∀ a, (a < a)==false

Antisymmetry ∀ a, b, if (a < b)==true => (b < a)==false

Transitivity ∀ a, b, c, if (a < b)==true and (b < c)==true
=> (a < c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

where:

equiv(a,b) : (a < b)==false && (b < a)==false

<

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

�572019 Victor Ciura | @ciura_victor

Named Requirements

https://en.cppreference.com/w/cpp/named_req

Examples from STL:

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

LessThanComparable, EqualityComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

http://wg21.link/p0898

https://en.cppreference.com/w/cpp/named_req
http://wg21.link/p0898

�582019 Victor Ciura | @ciura_victor

SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

http://wg21.link/p0898

#define

http://wg21.link/p0898

�592019 Victor Ciura | @ciura_victor

Regular
(aka "Stepanov Regular")

EqualityComparable

SemiRegular

+

http://wg21.link/p0898

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

#define

http://wg21.link/p0898

�602019 Victor Ciura | @ciura_victor

STL assumes equality is always defined (at least, equivalence relation)

STL algorithms assume Regular data structures

The STL was written with Regularity as its basis

http://wg21.link/p0898

Regular
(aka "Stepanov Regular")

Also, see the Palo Alto TR
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

http://wg21.link/p0898
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

�612019 Victor Ciura | @ciura_victor

EqualityComparable

https://en.cppreference.com/w/cpp/named_req/EqualityComparablehttps://en.wikipedia.org/wiki/Equivalence_relation

Reflexivity ∀ a, (a == a)==true

Symmetry ∀ a, b, if (a == b)==true => (b == a)==true

Transitivity ∀ a, b, c, if (a == b)==true and (b == c)==true
=> (a == c)==true

The type must work with operator== and the result should have standard semantics.

https://en.cppreference.com/w/cpp/named_req/EqualityComparable
https://en.wikipedia.org/wiki/Equivalence_relation

�622019 Victor Ciura | @ciura_victor

Equality vs. Equivalence

For the types that are both EqualityComparable and LessThanComparable,

the STL makes a clear distinction between equality and equivalence

where:

 equal(a,b) : (a == b)

 equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

�632019 Victor Ciura | @ciura_victor

Equality

Defining equality is hard 😞

�642019 Victor Ciura | @ciura_victor

Equality

Ultimately, Stepanov proposes the following definition:

Two objects are equal if their corresponding parts are equal (applied recursively),

including remote parts (but not comparing their addresses), excluding inessential
components, and excluding components which identify related objects.

http://stepanovpapers.com/DeSt98.pdf

〝

😓

“although it still leaves
room for judgement”

http://stepanovpapers.com/DeSt98.pdf

�652019 Victor Ciura | @ciura_victor

Three-way comparison

operator <=>

🛸 C++20

http://wg21.link/p0515

Bringing consistent comparison operations...

(a <=> b) < 0 if a < b
(a <=> b) > 0 if a > b
(a <=> b) == 0 if a and b are equal/equivalent

http://wg21.link/p0515

�662019 Victor Ciura | @ciura_victor

Three-way comparison

operator <=>🛸 C++20

The comparison categories for:

It's all about relation strength

🔥

�672019 Victor Ciura | @ciura_victor

Three-way comparison🛸 C++20

The Mothership Has Landed

Adding operator<=> to the whole STL

https://wg21.link/P1614

Barry Revzin

2019-07 Cologne ISO C++ Committee Meeting

�682019 Victor Ciura | @ciura_victor

Three-way comparison🛸 C++20

Simplify Your Code With Rocket Science

https://blog.tartanllama.xyz/spaceship-operator/

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

📖
Sy Brand

Cameron DaCamara

https://blog.tartanllama.xyz/spaceship-operator/
https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/

�692019 Victor Ciura | @ciura_victor

Before we get too far with C++20

let's spend a few minutes on an interesting C++17 type

�702019 Victor Ciura | @ciura_victor

An object that can refer to a constant

contiguous sequence of char-like objects

std::string_view

A string_view does not manage the storage that it refers to

Lifetime management is up to the user

C++17

🙋"

�712019 Victor Ciura | @ciura_victor

Enough string_view
to hang ourselves

https://www.youtube.com/watch?v=xwP4YCP_0q0

CppCon 2018

I have a whole talk just on C++17 std::string_view

https://www.youtube.com/watch?v=xwP4YCP_0q0

�72

- Arthur O’Dwyer

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

2019 Victor Ciura | @ciura_victor

�73

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

std::string_view is a borrow type

string_view succeeds admirably in the goal of

“drop-in replacement” for const string & parameters.⚠

The problem:

The two relatively old kinds of types are object types and value types

The new kid on the block is the borrow type

string_view is the first “mainstream” borrow type

2019 Victor Ciura | @ciura_victor

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�74

they lack ownership

they are short-lived

they generally can do without an assignment operator

they generally appear only in function parameter lists

they generally cannot be stored in data structures or  
returned safely from functions (no ownership semantics)

2019 Victor Ciura | @ciura_victor

Borrow types are essentially “borrowed” references to existing objects

�75

std::string_view is a borrow type

⚠

string_view is assignable: sv1 = sv2

Assignment has shallow semantics (of course, the viewed strings are immutable)

Meanwhile, the comparison sv1 == sv2 has deep semantics (lexicographic comp)

2019 Victor Ciura | @ciura_victor

�762019 Victor Ciura | @ciura_victor

std::string_view

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

Non-owning reference type

When used properly (eg. function parameter),

string_view works well...

as if it is a Regular type

�772019 Victor Ciura | @ciura_victor

�782019 Victor Ciura | @ciura_victor

std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

I give you std::span

the very confusing type that the world’s best C++

experts are not quite sure what to make of

🤦

https://en.cppreference.com/w/cpp/container/span

�792019 Victor Ciura | @ciura_victor

std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

Think "array_view" as in std::string_view,

but mutable on underlying data

😱

https://en.cppreference.com/w/cpp/container/span

�802019 Victor Ciura | @ciura_victor

std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

A std::span does not manage the storage that it refers to

Lifetime management is up to the user

https://en.cppreference.com/w/cpp/container/span

�812019 Victor Ciura | @ciura_victor

Historical Background

C++ Core Guidelines Editors:

• Bjarne Stroustrup

• Herb Suttergithub.com/isocpp/CppCoreGuidelines

F.24: Use a span<T> or a span_p<T> to designate a half-open sequence

CppCoreGuidelines.md#Rf-range

Pro.bounds: Bounds safety profile
CppCoreGuidelines.md#SS-bounds

http://www.stroustrup.com/
http://herbsutter.com/
https://github.com/isocpp/CppCoreGuidelines/
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-range
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#SS-bounds

�822019 Victor Ciura | @ciura_victor

C++ Core Guidelines

F.24: Use a span<T> or a span_p<T> to designate a half-open sequence

Reason: Informal/non-explicit ranges are a source of errors

Ranges are extremely common in C++ code.

Typically, they are implicit and their correct use is very hard to ensure.

Given a pair of arguments (p, n) designating an array [p:p+n),

it is in general impossible to know if there really are n elements to access following *p

GSL span<T> and span_p<T> were designed to solve this problem, by given an explicit context

�832019 Victor Ciura | @ciura_victor

C++ Core Guidelines

Pro.bounds: Bounds safety profile

Don't use pointer arithmetic; use span instead 

Only index into arrays using constant expressions  

No array-to-pointer decay 

Don't use standard-library functions and types that are not bounds-checked

Pass pointers to single objects (only) and Keep pointer arithmetic simple

Use the standard library in a type-safe manner

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ri-array
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rsl-bounds

�842019 Victor Ciura | @ciura_victor

Historical Background

GSL: Guidelines Support Library

github.com/microsoft/GSL

The library includes types like span, string_span, owner and others

github.com/Microsoft/GSL/blob/master/include/gsl/span

(circa 2017)

https://github.com/microsoft/GSL
https://github.com/Microsoft/GSL/blob/master/include/gsl/span

�852019 Victor Ciura | @ciura_victor

Historical Background

Comes directly from the C++ Core Guidelines’ GSL and is intended to be a

replacement especially for unsafe C-style (pointer, length) parameter pairs.

We expect to be used pervasively as a vocabulary type for function parameters
in particular.

〝
std::span

https://herbsutter.com/2018/04/02/trip-report-winter-iso-c-standards-meeting-jacksonville/

wg21.link/p0122

span: bounds-safe views for sequences of objects
Neil MacIntosh & Stephan T. Lavavej

https://herbsutter.com/2018/04/02/trip-report-winter-iso-c-standards-meeting-jacksonville/
http://wg21.link/p0122

�862019 Victor Ciura | @ciura_victor

Automatic Checkers

Use the C++ Core Guidelines checkers

core guideline checkers are installed by default in Visual Studio 2017 and Visual Studio 2019 

docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers 

LLVM clang-tidy -checks='-*,cppcoreguidelines-*'  

clang.llvm.org/extra/clang-tidy/checks/list.html 

ClangPowerTools 

clangpowertools.com (powered by clang-tidy)

https://docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers?view=vs-2019
https://clang.llvm.org/extra/clang-tidy/checks/list.html
https://clangpowertools.com

�872019 Victor Ciura | @ciura_victor

Automatic Checkers

LLVM clang-tidy

clang.llvm.org/extra/clang-tidy/checks/cppcoreguidelines-pro-bounds-pointer-arithmetic.html

clang.llvm.org/extra/clang-tidy/checks/cppcoreguidelines-pro-bounds-array-to-pointer-decay.html

This check flags all array to pointer decays. Pointers should not be used as arrays.  
span<T> is a bounds-checked, safe alternative to using pointers to access arrays.

This check flags all usage of pointer arithmetic, because it could lead to an invalid pointer.  
Subtraction of two pointers is not flagged by this check.

Pointers should only refer to single objects, and pointer arithmetic is fragile and easy to get wrong.  
span<T> is a bounds-checked, safe type for accessing arrays of data.

https://clang.llvm.org/extra/clang-tidy/checks/cppcoreguidelines-pro-bounds-pointer-arithmetic.html
https://clang.llvm.org/extra/clang-tidy/checks/cppcoreguidelines-pro-bounds-array-to-pointer-decay.html

�882019 Victor Ciura | @ciura_victor

Visual Studio 2017/2019

Automatic Checkers

docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers

C26485  
Bounds.3: No array-to-pointer decay.

C26481  
Bounds.1: Don't use pointer arithmetic.  
Use span instead.

https://docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers?view=vs-2019

�892019 Victor Ciura | @ciura_victor

Visual Studio 2017/2019

Automatic Checkers

docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers

int arr[10]; // warning C26494
int * p = arr; // warning C26485

[[gsl::suppress(bounds.1)]] // This attribute suppresses Bounds rule #1
{
 int * q = p + 1; // warning C26481 (suppressed)
 p = q++; // warning C26481 (suppressed)
}

C26494  
Type.5: Always initialize an object

 
C26485  
Bounds.3: No array-to-pointer decay

C26481  
Bounds.1: Don't use pointer arithmetic 
Use span instead

https://docs.microsoft.com/en-us/visualstudio/code-quality/using-the-cpp-core-guidelines-checkers?view=vs-2019

�902019 Victor Ciura | @ciura_victor

Automatic Checkers

https://twitter.com/zeuxcg/status/1088686771037122560?s=21

👉

🤔

https://twitter.com/zeuxcg/status/1088686771037122560?s=21

�912019 Victor Ciura | @ciura_victor

Automatic Checkers

https://twitter.com/zeuxcg/status/1088686771037122560?s=21

👉

🙄

https://twitter.com/zeuxcg/status/1088686771037122560?s=21

�922019 Victor Ciura | @ciura_victor

an object that can refer to a contiguous sequence
of objects with the first element of the sequence at
position zero

A typical implementation holds only two members:

- a pointer to T

- a size

A span can either have:

- a static extent (number of elements is known and encoded in the type)

- a dynamic extent

C++20

�932019 Victor Ciura | @ciura_victor

Construct a span

👉

�942019 Victor Ciura | @ciura_victor

Notable functions

constexpr reference front() const;

constexpr reference back() const;

constexpr reference operator[](index_type idx) const;

constexpr pointer data() const noexcept;

�952019 Victor Ciura | @ciura_victor

Notable functions
constexpr index_type size_bytes() const noexcept
{
 return size() * sizeof(element_type);
}

template<class T, std::size_t N>
auto as_bytes(std::span<T, N> s) noexcept
{
 return std::span(reinterpret_cast<const std::byte*>(s.data()), s.size_bytes());
}

template<class T, std::size_t N>
auto as_writable_bytes(std::span<T, N> s) noexcept
{
 return std::span(reinterpret_cast<std::byte*>(s.data()), s.size_bytes());
}

�962019 Victor Ciura | @ciura_victor

Subviews
template<size_t Count>
constexpr span<element_type, Count> first() const;

constexpr span<element_type, std::dynamic_extent> first(size_t Count) const;

template<size_t Count>
constexpr span<element_type, Count> last() const;

constexpr span<element_type, std::dynamic_extent> last(size_t Count) const;

template<size_t Offset, size_t Count = std::dynamic_extent>
constexpr span<element_type, CountOrDiff> subspan() const;

constexpr std::span<element_type, std::dynamic_extent> subspan(
 size_t Offset, size_t Count = std::dynamic_extent) const;

�972019 Victor Ciura | @ciura_victor

Usability Enhancements for std::span
wg21.link/p1024

Add front() and back() member functions

improve consistency with standard library containers

Mark empty() as [[nodiscard]]

Remove operator()

vestigial traces from the array_view multidimensional genesis

Structured bindings support for fixed-size spans

std::get<N>()

tuple_element / tuple_size

http://wg21.link/p1024

�982019 Victor Ciura | @ciura_victor

WWSD

What Would Stepanov Do?

�992019 Victor Ciura | @ciura_victor

wg21.link/p1085

https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

Should Span be Regular?

Tony Van Eerd

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

the meaning of copy construction and copy assignment is to copy the value of the object

the meaning of == and < is to compare the value of the object

copy, assignment, equality are expected to go together (act as built-in types -- intuitively)

when designing a class type, where possible it should be a Regular type (see EoP)

http://wg21.link/p1085
https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

�1002019 Victor Ciura | @ciura_victor

wg21.link/p1085

https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

Should Span be Regular?

Tony Van Eerd

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

but is span a value ? do we need a deep compare ?

std::span is trying to act like a collection of the elements over which it spans

but it's not Regular !

basically std::span has reference semantics

http://wg21.link/p1085
https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

�1012019 Victor Ciura | @ciura_victor

wg21.link/p1085

https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

Should Span be Regular?

Tony Van Eerd

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

shallow const => shallow operator==

but shallow operator== might be really confusing to users (especially because of string_view)

final decision was to REMOVE operator== completely

http://wg21.link/p1085
https://herbsutter.com/2018/11/13/trip-report-fall-iso-c-standards-meeting-san-diego/

�1022019 Victor Ciura | @ciura_victor

A Strange Beast
std::span - a case of unmet expectations...

https://cor3ntin.github.io/posts/span/

Users of the STL can reasonably expect span to be a drop-in replacement for

std::vector | std::array

And that happens to be mostly the case…

Until of course, you try to copy it or change its value,  

then it stops acting like a container :(

std::span is Regular SemiRegular

https://cor3ntin.github.io/posts/span/

�1032019 Victor Ciura | @ciura_victor

std::span<T>C++20

https://cor3ntin.github.io/posts/span/Photo credit: Corentin Jabot
📖

https://cor3ntin.github.io/posts/span/

�1042019 Victor Ciura | @ciura_victor

Non-owning reference types

like string_view or span

You need more contextual information when working
on an instance of this type

Things to consider:

shallow copy ?

shallow / deep compare ?

const / mutability ?

operator==

�1052019 Victor Ciura | @ciura_victor

Have reference semantics,

but without the “magic” that can make references safer

(for example lifetime extension)

Non-owning reference types

like string_view or span

�106

std::string_view cheatsheet

👉

2019 Victor Ciura | @ciura_victor

�107

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html

clang-tidy bugprone-dangling-handle

〝 Detect dangling references in value handles like std::string_view

These dangling references can be a result of constructing handles from
temporary values, where the temporary is destroyed soon after the handle
is created.

Options:

HandleClasses
A semicolon-separated list of class names that should be treated as handles.  
By default only std::string_view is considered.

2019 Victor Ciura | @ciura_victor

std::span👉

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html

�108

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

This is important because it turns out to be easy to convert [by design]

a std::string to a std::string_view,

or a std::vector/array to a std::span,

so that dangling is almost the default behavior.

CppCoreGuidelines

Lifetime safety: Preventing common dangling

2019 Victor Ciura | @ciura_victor

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

�109

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

CppCoreGuidelines

void example()
{
 std::string_view sv = std::string("dangling"); // A
 std::cout << sv;
}

clang -Wlifetime

// ERROR (lifetime.3): ‘sv’ was invalidated when
// temporary was destroyed (line A)

Experimental

Lifetime safety: Preventing common dangling

2019 Victor Ciura | @ciura_victor

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

�110

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

void example()
{
 std::string_view sv = std::string("dangling");

 std::cout << sv;
}

// warning: object backing the pointer will be destroyed
// at the end of the full-expression [-Wdangling-gsl]

Lifetime safety: Preventing common dangling

2019 Victor Ciura | @ciura_victor

warning: initializing pointer member to point to a temporary object whose
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10
NEW

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

�111

Lifetime safety: Preventing common dangling

2019 Victor Ciura | @ciura_victor

warning: initializing pointer member to point to a temporary object whose
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10

void example()
{
 std::span sp = std::vector{1,2,3,4};

 for (auto e : sp)
 std::cout << e << " ";
}

// warning: 🤞 WIP... (PR)

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

NEW

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

�112

Simple rules for borrow types

Borrow types must appear only as function parameters or for-loop control variables

🤕 We can make an exception for function return types:

• a function may have a borrow type as its return type

 (the function must be explicitly [annotated] as returning a potentially dangling reference)

• the result returned must not be stored into any named variable,

 except passed along to a function parameter or for-loop control variable

2019 Victor Ciura | @ciura_victor

�113

Say What You Mean

If you decide to make an exception to these best practices,

strongly consider explicitly annotating your intent in code.

https://en.cppreference.com/w/cpp/language/attributes

[[magic]]

[[trust_me_on_this_one]]

[[i_am_very_sorry]]

[[it_works_on_my_machine]]

[[beware_of_dangling_reference]]

Custom attributes ?

😜

Credit: Ólafur Waage
@olafurw

2019 Victor Ciura | @ciura_victor

https://en.cppreference.com/w/cpp/language/attributes

�1142019 Victor Ciura | @ciura_victor

https://godbolt.org/z/FRHiPR

fatal error: span: No such file or directory
 3 | #include

Compiler Support

https://en.cppreference.com/w/cpp/compiler_support

https://godbolt.org/z/FRHiPR
https://en.cppreference.com/w/cpp/compiler_support

�1152019 Victor Ciura | @ciura_victor

Span Evolution

Initial std::span spec wg21.link/p0122 Clang libc++ 7.0

Remove comparison operators of std::span wg21.link/p1085 Clang libc++ 8.0

Usability enhancements for std::span wg21.link/p1024 Clang libc++ 9.0

std::ssize() and unsigned extent for std::span wg21.link/p1227 Clang libc++ 9.0

http://wg21.link/p0122
http://wg21.link/p1085
http://wg21.link/p1024
http://wg21.link/p1227

�1162019 Victor Ciura | @ciura_victor

Span Evolution (cont)

github.com/cplusplus/papers/issues?q=span

https://wg21.link/p1394

https://wg21.link/p1391

Range constructor for std::span

Range constructor for std::string_view (Bonus)

https://wg21.link/p448 A strstream replacement using span<charT> as buffer

WIP...

https://github.com/cplusplus/papers/issues?utf8=%E2%9C%93&q=span
https://wg21.link/p1394
https://wg21.link/p1391
https://wg21.link/p448

�1172019 Victor Ciura | @ciura_victor

Can't Wait ?

Clang libc++ 9.0

Want an implementation of std::span to match the C++20 CD ?

https://github.com/tcbrindle/span

by Tristan Brindle

github.com/chromium/chromium/base/containers/span.h

https://github.com/tcbrindle/span
https://github.com/chromium/chromium/blob/master/base/containers/span.h

�1182019 Victor Ciura | @ciura_victor

The Five Phases Of Joy

https://twitter.com/timur_audio/status/1160092474259443712?s=21

Can you guess what was
the C++20 feature ?

std::span

lacks a feature test macro

https://twitter.com/timur_audio/status/1160092474259443712?s=21

�1192019 Victor Ciura | @ciura_victor

The Five Phases Of Joy

https://twitter.com/timur_audio/status/1160092474259443712?s=21

Can't you use __has_include for that?  
new header:

std::span lacks a feature test macro

💡
libc++ always has all the headers it’s implemented,  
but those headers are empty unless you have the right standard enabled.  
So that doesn’t work.

Why do I care ?

In case you want to use another span implementation,

until the standard one becomes available (same API)

https://twitter.com/timur_audio/status/1160092474259443712?s=21

�1202019 Victor Ciura | @ciura_victor

Double or Nothing

int main(std::span<std::string_view> args);

Two of my favorite pet peeves, combined into one glorious disaster

What if the implementation expects a null-terminated string ? 
(eg. calling some old system C API)

�1212019 Victor Ciura | @ciura_victor

Beyond std::span C++ 23-26

Possible areas of focus:

stride_view

slice_view

sliding_view

cycle_view

chunk_view

It's all about ranges !

�1222019 Victor Ciura | @ciura_victor

Other Dimensions...

https://cppcast.com/bryce-lelbach-mdspan/

https://github.com/kokkos/mdspan

Hear more about it:

Early implementation by David Hollman:

HP computing, graphics

C++ 23-26

mdarray wg21.link/p1684

mdspan wg21.link/p0009

#defining data layout in m
em

ory

An Owning Multidimensional Array Analog of mdspan

A Non-Owning Multidimensional Array Reference

https://cppcast.com/bryce-lelbach-mdspan/
https://github.com/kokkos/mdspan
http://wg21.link/p1684
http://wg21.link/p0009

�1232019 Victor Ciura | @ciura_victor

📯 Call To Action

Make your value types Regular

The best Regular types are those that model built-ins
most closely and have no dependent preconditions.

Think int or std::string or std::vector

https://github.com/cplusplus/LEWG/blob/master/library-design-guidelines.md

https://github.com/cplusplus/LEWG/blob/master/library-design-guidelines.md

�1242019 Victor Ciura | @ciura_victor

📯 Call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

Try to restrict these types to SemiRegular

to avoid confusion for your users

Victor Ciura
Principal Engineer

CAPHYON

A Short Life span＜＞
For a Regular Mess

@ciura_victor

https://twitter.com/ciura_victor

�1262019 Victor Ciura | @ciura_victor

📖 References I encourage you to study

Alexander Stapanov, Paul McJones
Elements of Programming (2009)

http://elementsofprogramming.com

Alexander Stapanov, James C. Dehnert
Fundamentals of Generic Programming (1998)

http://stepanovpapers.com/DeSt98.pdf

Alexander Stepanov
STL and Its Design Principles - presented at Adobe Systems Inc., January 30, 2002

https://www.youtube.com/watch?v=COuHLky7E2Q

http://stepanovpapers.com/stl.pdf

Bjarne Stroustrup, Andrew Sutton, et al.

A Concept Design for the STL (2012)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

http://elementsofprogramming.com
http://stepanovpapers.com/DeSt98.pdf
https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

�1272019 Victor Ciura | @ciura_victor

Titus Winters
Revisiting Regular Types

https://abseil.io/blog/20180531-regular-types

Corentin Jabot (cor3ntin)
A can of span

https://cor3ntin.github.io/posts/span/

RangeOf: A better span

https://cor3ntin.github.io/posts/rangeof/

Christopher Di Bella
Prepping Yourself to Conceptify Algorithms

https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html

Tony Van Eerd
Should Span be Regular?

http://wg21.link/P1085

📖 References I encourage you to study

https://abseil.io/blog/20180531-regular-types
https://cor3ntin.github.io/posts/span/
https://cor3ntin.github.io/posts/rangeof/
https://www.cjdb.com.au/blog/2018/05/15/prepping-yourself-to-conceptify-algorithms.html
http://wg21.link/P1085

�1282019 Victor Ciura | @ciura_victor

Barry Revzin

Non-Ownership and Generic Programming and Regular types, oh my!

https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my

Should Span Be Regular?

https://medium.com/@barryrevzin/should-span-be-regular-6d7e828dd44

span: the best span

https://brevzin.github.io/c++/2018/12/03/span-best-span/

Implementing the spaceship operator for optional

https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

📖 References I encourage you to study

https://medium.com/@barryrevzin/non-ownership-and-generic-programming-and-regular-types-oh-my-d35cd490d402
https://medium.com/@barryrevzin/should-span-be-regular-6d7e828dd44
https://brevzin.github.io/c++/2018/12/03/span-best-span/
https://medium.com/@barryrevzin/implementing-the-spaceship-operator-for-optional-4de89fc6d5ec

�1292019 Victor Ciura | @ciura_victor

Sy Brand

Functional exceptionless error-handling with optional and expected

https://blog.tartanllama.xyz/optional-expected/

Spaceship Operator

https://blog.tartanllama.xyz/spaceship-operator/

Monadic operations for std::optional

https://wg21.tartanllama.xyz/monadic-optional

📖 References I encourage you to study

https://blog.tartanllama.xyz/optional-expected/
https://blog.tartanllama.xyz/spaceship-operator/
https://wg21.tartanllama.xyz/monadic-optional

�1302019 Victor Ciura | @ciura_victor

Arthur O’Dwyer

Default-constructibility is overrated

https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/

Comparison categories for narrow-contract comparators

https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/

std::string_view is a borrow type

https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

📖 References I encourage you to study

https://quuxplusone.github.io/blog/2018/05/10/regular-should-not-imply-default-constructible/
https://quuxplusone.github.io/blog/2018/08/07/lakos-rule-for-comparison-categories/
https://quuxplusone.github.io/blog/2018/03/27/string-view-is-a-borrow-type/

�1312019 Victor Ciura | @ciura_victor

Jonathan Müller
Mathematics behind Comparison

#1: Equality and Equivalence Relations

https://foonathan.net/blog/2018/06/20/equivalence-relations.html

#2: Ordering Relations in Math

https://foonathan.net/blog/2018/07/19/ordering-relations-math.html

#3: Ordering Relations in C++

https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html

#4: Three-Way Comparison

https://foonathan.net/blog/2018/09/07/three-way-comparison.html

#5: Ordering Algorithms

https://foonathan.net/blog/2018/09/07/three-way-comparison.html

📖 References I encourage you to study

https://foonathan.net/blog/2018/06/20/equivalence-relations.html
https://foonathan.net/blog/2018/07/19/ordering-relations-math.html
https://foonathan.net/blog/2018/07/19/ordering-relations-programming.html
https://foonathan.net/blog/2018/09/07/three-way-comparison.html
https://foonathan.net/blog/2018/09/07/three-way-comparison.html

�1322019 Victor Ciura | @ciura_victor

Bonus Slides

�1332019 Victor Ciura | @ciura_victor

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

One particularly sensitive topic about handling C++ values

is that they are all conservatively considered non-relocatable

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�1342019 Victor Ciura | @ciura_victor

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory

For example, an int32 is relocatable because moving its 4 bytes would preserve

its actual value, so the address of that value does not matter to its integrity.

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�1352019 Victor Ciura | @ciura_victor

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�1362019 Victor Ciura | @ciura_victor

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

C++'s assumption of non-relocatable values hurts everybody

for the benefit of a few questionable designs

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�1372019 Victor Ciura | @ciura_victor

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

Only a minority of objects are genuinely non-relocatable:

- objects that use internal pointers

- objects that need to update observers that store pointers to them

Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

�1382019 Victor Ciura | @ciura_victor

"Object relocation in terms of move plus destroy"

Arthur O'Dwyer

Object Relocation

https://wg21.link/p1144

🤔

https://wg21.link/p1144

