
Victor Ciura
Technical Lead, Caphyon
www.caphyon.ro

July, 2019
Craiova

FP in 10

@ciura_victor

 CAPHYON ⚡LIGHTNING TALKS

�22019 Victor Ciura | @ciura_victor

Functional Programming

What is it all about ?

🤔

�32019 Victor Ciura | @ciura_victor

pipelines

lambdas & closures

currying

composition

Maybe | Just

monads

optional

declarative vs imperative
algebraic data types

fold values types

higher order functions

ranges IO monad

monoids

FP

lifting

category theory

algorithms

map

expressions vs statements

partial application

pure functions

pattern matching

lazy evaluation

recursion

�42019 Victor Ciura | @ciura_victor

Paradox of Programming

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

Machine/Human impedance mismatch:

Local/Global perspective

Progress/Goal oriented

Detail/Idea

Vast/Limited memory

Pretty reliable/Error prone

Machine language/Mathematics

Is it easier to think like a machine than to do math?

�52019 Victor Ciura | @ciura_victor

Semantics

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

The meaning of a program

Operational semantics: local, progress oriented

• Execute program on an abstract machine in your brain

Denotational semantics

• Translate program to math

Math: an ancient language developed for humans

�62019 Victor Ciura | @ciura_victor

What is Functional Programming ?

• Functional programming is a style of programming in which the basic method of
computation is the application of functions to arguments

• A functional language is one that supports and encourages the functional style

�72019 Victor Ciura | @ciura_victor

Let's address the 🐘 in the room...

Haskell

�82019 Victor Ciura | @ciura_victor

A functional language is one that supports and
encourages the functional style

What do you mean ?

�92019 Victor Ciura | @ciura_victor

Summing the integers 1 to 10 in C++/Java/C#

int total = 0;
for (int i = 1; i ≤ 10; i++)
 total = total + i;

The computation method is variable assignment.

�102019 Victor Ciura | @ciura_victor

Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.

�112019 Victor Ciura | @ciura_victor

Sneak Peek Into Next Level QA (Test Automation) - Antonio Valent

�122019 Victor Ciura | @ciura_victor

Historical Background

�132019 Victor Ciura | @ciura_victor

Historical Background
Most of the "new" ideas and innovations in modern

programming languages are actually very old...

�142019 Victor Ciura | @ciura_victor

Historical Background
1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

�152019 Victor Ciura | @ciura_victor

Historical Background

John McCarthy develops Lisp, the first functional language, with some
influences from the lambda calculus, but retaining variable assignments

1950s

�162019 Victor Ciura | @ciura_victor

Historical Background

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments

1960s

�172019 Victor Ciura | @ciura_victor

Historical Background

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs

1970s

�182019 Victor Ciura | @ciura_victor

Historical Background

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types

1970s

�192019 Victor Ciura | @ciura_victor

Historical Background

David Turner develops a number of lazy functional languages,
culminating in the Miranda system

1970-80s

�202019 Victor Ciura | @ciura_victor

Historical Background

An international committee starts the development of Haskell,
a standard lazy functional language

1987

�212019 Victor Ciura | @ciura_victor

Historical Background

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

�222019 Victor Ciura | @ciura_victor

Historical Background

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010

2003
2010

�232019 Victor Ciura | @ciura_victor

f [] = []
f (x:xs) = f ys ++ [x] ++ f zs
 where
 ys = [a | a ← xs, a ≤ x]
 zs = [b | b ← xs, b > x]

A Taste of Haskell

What does f do ?

�242019 Victor Ciura | @ciura_victor

Quick Sort

qsort :: Ord a ⇒ [a] " [a]
qsort [] = []
qsort (x:xs) =
 qsort smaller ++ [x] ++ qsort larger
 where
 smaller = [a | a ← xs, a ≤ x]
 larger = [b | b ← xs, b > x]

�252019 Victor Ciura | @ciura_victor

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]

Quick Sort

�262019 Victor Ciura | @ciura_victor

Quick Sort

void quickSort(arr[], low, high)
{
 if (low < high)
 {
 /* pi is partitioning index, arr[pi] is now
 at right place */
 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1);
 quickSort(arr, pi + 1, high);
 }
}

/* This function takes last element as pivot, places
 the pivot element at its correct position in sorted
 array, and places all smaller (smaller than pivot)
 to left of pivot and all greater elements to right
 of pivot */
partition (arr[], low, high)
{
 // pivot (Element to be placed at right position)
 pivot = arr[high];

 i = (low - 1) // Index of smaller element

 for (j = low; j <= high- 1; j++)
 {
 // If current element is smaller than or
 // equal to pivot
 if (arr[j] <= pivot)
 {
 i++; // increment index of smaller element
 swap arr[i] and arr[j]
 }
 }
 swap arr[i + 1] and arr[high])
 return (i + 1)
}pseudo-code

�272019 Victor Ciura | @ciura_victor

True Story

1986:

Donald Knuth was asked to implement a program for the ”Programming pearls” column in

the Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of
those words along with their frequencies.

His solution written in Pascal was 10 pages long.

�282019 Victor Ciura | @ciura_victor

His response was a 6-line shell script that did the same:

 tr -cs A-Za-z '\n' |
 tr A-Z a-z |
 sort |
 uniq -c |
 sort -rn |
 sed ${1}q

True Story
Doug McIlroy

�292019 Victor Ciura | @ciura_victor

Taking inspiration from Doug McIlroy's UNIX shell script,
write an algorithm in your favorite programming language,

that solves the same problem: word frequencies

It's all about pipelines

💻

�302019 Victor Ciura | @ciura_victor

Historical Background

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

�312019 Victor Ciura | @ciura_victor

"Make your code readable.
Pretend the next person who looks at your
code is a psychopath and they know where
you live."

Phil Wadler

Takeaway

@ciura_victor

July, 2019
Craiova

Victor Ciura
Technical Lead, Caphyon
www.caphyon.ro

FP in 10

 CAPHYON ⚡LIGHTNING TALKS

