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Abstract

Can a language whose official motto is “Avoid Success at All Costs” teach us new tricks in modern
programming languages?

If Haskell is so great, why hasn't it taken over the world? My claim is that it has. But not as a Roman
legion loudly marching in a new territory, rather as distributed Trojan horses popping in at the gates,
masqguerading as modern features or novel ideas in today’s mainstream languages. Functional
Programming ideas that have been around for over 40 years will be rediscovered to solve our current
software complexity problems.

Indeed, modern programming languages have become more functional. From mundane concepts like
lambdas & closures, function objects, values types and constants, to composability of algorithms,
ranges, folding, mapping or even higher-order functions.

In this workshop we’ll analyze a bunch of FP technigues and see how they help make our code shorter,
clearer and faster, by embracing a declarative vs. an imperative style. Brace yourselves for a bumpy ride
including composition, lifting, currying, partial application, pure functions, maybe even pattern matching
and lazy evaluation.

Spoiler: no unicorns here.
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Advanced Installer

2019 Victor Ciura | @ciura_victor


https://twitter.com/ciura_victor
https://www.advancedinstaller.com
http://www.clangpowertools.com

Curry On
Functional Programming

What ig it all about ?




Haskell ranges std::optional C++

algorithms STL
Maybe | Just lifting |

lambdas & closures monoids

i . values types
lazy evaluation declarative vs imperative
monads . . algebraic data types
higher order functions
map
. composition

pattern matching Fp

, expressions vs statements

pure functions
currying . o

category theory e partial application

recursion
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Paradox of Programming

Machine/Human impedance mismatch:

o Local/Global perspective
© Progress/Goal oriented

o Detail/ldea

© Vast/Limited memory

o Pretty reliable/Error prone

o Machine language/Mathematics

Is it easier to think like a machine than to do math?

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU
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https://www.youtube.com/watch?v=JH_Ou17_zyU

Semantics

~ The meaning of a program
~ Operational semantics: local, progress oriented
 EXxecute program on an abstract machine in your brain
~ Denotational semantics
* [ranslate program to math

~ Math: an ancient language developed for humans

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU
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What is Functional Programming ?

* Functional programming is a style of programming in which the basic method of
computation is the application of functions to arguments

* A functional language is one that supports and encourages the functional style
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Let s address the m in the room...

»eHaskel l




Second Edition

https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/
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https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/

A functional language Is one that supports
and encourages the functional style

What do you mean 2




Summing the integers 1 to 10 in C++/Java/C#

int total = ©;
for (int 1 = 1; i £ 10; i++)
total = total + 1;

The computation method iIs variable assignment.
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Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.
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Historical Background
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Historical Background

Most of the "new"” ideas and innovations in modern
programming languages are actually very old...
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Historical Background

1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions
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Historical Background

1950s

John McCarthy develops Lisp, the first functional language, with some
Influences from the lambda calculus, but retaining variable assignments
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Historical Background

1960s

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments
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Historical Background

1970s

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs
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Historical Background

1970s

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types
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Historical Background

1970-80s

David Turner develops a number of lazy functional languages,
culminating in the Miranda system
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Historical Background

1987

»=-Haskell

An advanced purely-functional programming language

An international committee starts the development of Haskell,
a standard lazy functional language
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Historical Background

1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell
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Historical Background

2003
2010

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010
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Historical Background

2010-2019

- standard distribution

< library support

Haskell
Platform

Haskell with batteries included

-~ new language features

- development tools

~ use In industry

o Influence on other languages
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A Taste of Haskell

f L] = L]
f (x:xs) =t ys ++ [x] ++ f zs
where
ys = [a | a « xs, a £ x]
zs = |[b | b « xs, b > x]

What does f do ?
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Standard Prelude

Haskell comes with a large number of standard library functions

Select the first element of a list:

> head [1,2,3,4,5]
1

Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]
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Standard Prelude

Select the nth element of a list:

> [1,2,3,4,5] !'! 2
3

Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]
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Standard Prelude

Remove the first n elements from a list:
> drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:
> length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:
> sum [1,2,3,4,5]
15
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Standard Prelude

Calculate the product of a list of numbers:
> product [1,2,3,4,5]
120

Append two lists:
> [1,2,3] ++ [4,5]
11,2,3,4,5]

Reverse a list:
> reverse [1,2,3,4,5]
[5,4,3,2,1]
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Function Application

f ab + c*d

f appliedtoaandb

Function application is assumed to have higher priority than all other operators:

fa+b

means (f a) + b rather than f (a + b)

2019 Victor Ciura | @ciura_victor



Function Application

Mathematics Haskell
f(x) f X
FCx,y) Fxy
FCg(x)) f (g x)
F(x,9Cy)) fx (g y)

f(x) g(y) fx*gy
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My First Function

double X = X + X

guadruple x = double (double x)

> quadruple 10
40

> take (double 2) [1,2,3,4,5,0]
[1,2,3,4]
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InfiX Functions

AN

average ns = sum ns div length ns

X f Y isjust syntactic sugar for f X Y
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The Layout Rule

The layout rule avoids the need for explicit
syntax to indicate the grouping of definitions

d=b + C a=Db + C
where where
b = 1 means < {b = 1;
C =2 cC = 2}
d=a * 2 d=a * 2

implicit grouping explicit grouping
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Types In Haskell

If evaluating an expression € would produce a value of type t,

then © has type T, writtenas € . €

Every well formed expression has a type, which can be automatically
calculated at compile time using a process called type inference

All type errors are found at compile time,
=> makes programs safer and faster by removing the need for type checks at run time

2019 Victor Ciura | @ciura_victor



List Types

A list Is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

[L"'a’],[’b”,"c’ 1] ¢ [[Char]]
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Tuple Types

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])
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Function lypes

A function is a mapping from values of one type to values of
another type:

not :: Bool » Bool

even :: Int » Bool
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Function lypes

add :: (Int,Int) » Int
add (X,y) = X+y

zeroto :: Int - [Int]
zeroto n = [0. .n]
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Curried Functions

Functions with multiple arguments are also
possible by returning functions as results:

add’ :: Int - (Int - Int)
add’ X y = X+y

takes an integer and returns a function
In turn, this new function takes an integer

and returns the result




Curried Functions

add and add’ produce the same final result,
but add takes its two arguments at the same time,
whereas add’ takes them one at a time:

add :: (Int,Int) » Int

add’ :: Int » (Int » Int)

Functions that take their arguments one at a time are called curried functions,
celebrating the work of Haskell Curry on such functions.

2019 Victor Ciura | @ciura_victor



Curried Functions

Functions with more than two arguments can
be curried by returning nested functions:

mult :: Int » (Int »> (Int - Int))
mult X y z = x*y*z

takes an integer and returns a function , Which In

turn takes an integer and returns a function , Which
finally takes an integer and returns the result
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Curried Functions

Curried functions are more flexible than functions on tuples,
because useful functions can often be made
by partially applying a curried function.

add’ 1 :: Int » Int
take 5 :: [Int] - [Int]

drop 5 :: [Int] » [Int]
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Currying Conventions

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Int » Int » Int » Int

The arrow — associates to the right

same as: Int » (Int » (Int » Int))
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Currying Conventions

As a consequence, it is then natural for
function application to associate to the left

mult X y z

Unless tupling is explicitly required,
all functions in Haskell are normally defined In curried form
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Polymorphic Functions

A function is called polymorphic if its type contains
one or more type variables

length :: [a] » Int

For any type , Length takes a list of
values of type and returns an integer
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Polymorphic Functions

Type variables can be instantiated to different
types in different circumstances:

> length [False,True]

2

> length [1,2,3,4] —l

4

Type variables must begin with a lower-case letter,
and are usually named a, b, c...
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Polymorphic Functions

Many of the functions defined in the standard prelude are polymorphic:
fst :: (a,b) » a
head :: [a] -» a
take :: Int - [a] - [a]

zip :: [a] » [b] » [(a,b)]

1d :: a - d
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Guarded Equations

abs :: Int - Int
abs n = 1f n =2 0 then n else -n

As an alternative to conditionals,
functions can also be defined using guarded equations

abs n | n > 0
| otherwise

|
-
-
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Guarded Equations

signum :: Int » Int
signum n = 1f n < @ then -1 else
1f n == 0 then 0 else 1

Guarded equations can be used to make definitions involving multiple conditions easier to read:

signum n | n < @ = -1
| N == = 0
| otherwise =1

The catch all condition otherwise is defined in the prelude by otherwise = True
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Pattern Matching

not :: Bool » Bool
not False True
not True False

2019 Victor Ciura | @ciura_victor



Pattern Matching

(&&) :: Bool » Bool -» Bool
True && True = True

True && False = False
False && True = False
False && False = False

can be defined more compactly by:

(&&) :: Bool » Bool -» Bool
True && True True
&& False

underscore symbol _ is a wildcard pattern that matches any argument value
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Pattern Matching

However, the following definition is more efficient,
because it avoids evaluating the second argument if the first argument is False

(&&) :: Bool » Bool -» Bool
True && b = b
False && _ = False

underscore symbol _ is a wildcard pattern that matches any argument value

2019 Victor Ciura | @ciura_victor 56



Pattern Matching

Patterns are matched in order.
The following definition always returns False:

False
True

_ Q& _
True && True
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List Patterns

Internally, every non-empty list is constructed by repeated use of an
operator (:) called “cons” that adds an element to the start of a list

1,2,3,4]

means 1:(2:(3:(4:11)))
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List Patterns (x:xs)

Functions on lists can be defined using X . XS patterns

head :: [a] » a
head (x:_) = X

tail :: [a] -» [ad]
tail (_:Xs) = Xs

X:Xs patterns only match non-empty lists:

> head [ ]
*¥*¥* Exception: empty list
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Lambda Expressions

AX > X 4+ X

\X » X + X

the nameless function that takes a number
and returns the result
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Lambda Expressions

Lambda expressions can be used to avoid naming functions that are only referenced once

odds n = map f [0..n-1]
where
f x = x*¥2 + 1

can be simplified to:

odds n = map (\x » x*2 + 1) [0..n-1]
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Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets

f x2 | x e {1...5} }

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1...5}

2019 Victor Ciura | @ciura_victor



Set Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists

[xA2 | x « [1..5]]

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1...5}
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Set Comprehensions

[xA2 | x « [1..5]]

The expression x < [1..5] is called a generator,
as it states how to generate values for x

Comprehensions can have multiple generators, separated by commas:

> [(x,y) | x « [1,2,3], ¥y « [4,5]]

1(1,4),(1,5),0,4),(2,5),(3,4),(3,5)]
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Set Comprehensions

Changing the order of the generators changes the order of the elements in the final list:

> LOGy) |y < [4,5], x < [1,2,3]]

1(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with later generators as more
deeply nested loops whose variables change value more frequently.

2019 Victor Ciura | @ciura_victor



Set Comprehensions

> [(Gy) |y < [4,5], x <« [1,2,3]]

1(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x + [1,2,3] is the last generator, so the value of the x
component of each pair changes most frequently.

2019 Victor Ciura | @ciura_victor



Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators

LOGy) |x < [1..3], y <« [x..3]]

The list [Cl,l),(l,Z),Cl,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (X,Yy) such that x,y are elements

ofthelist [1..3] andy > X

2019 Victor Ciura | @ciura_victor



Dependant Generators

Using a dependant generator we can define the library function that concatenates a list of lists:

concat :: [[a]l]l -» [a]
concat xss = [X | Xs « Xxss, X « XS]

> concat [[1,2,3],[4,5],[6]]

1,2,3,4,5,6]

2019 Victor Ciura | @ciura_victor



Guards

List comprehensions can use guards to restrict the values produced by earlier generators

[IXx | x « [1..10], even X]

The list [2,4,6,8,10] of all numbers such that
is an element of the list [1..10] and is

2019 Victor Ciura | @ciura_victor



Guards

Using a guard we can define a function that maps a positive integer to its list of factors:

factors :: Int - [Int]
factors n = [xX | x « [1..n], n mod X == 0]

> factors 15

[1,3,5,15]
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Guards

A positive integer is prime if its only factors are 1 and itself.
Using factors we can define a function that decides if a number is prime:

prime :: Int » Bool
prime n = factors n == [1,n]

> prime 15
False

> prime 7
True
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Guards

Using a guard we can now define a function that returns the list of all primes up to a given Iimit:

primes :: Int » [Int]
primes n = [Xx | x « [2..n], prime Xx]

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]
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ZIp Function

A useful library function is zip, which maps two lists to a list of pairs of their corresponding elements

zip :: [a] » [b] » [(Ca,b)]

> Z'Lp [,Cl,,,b,,,c,] [1:Z:3a4:|

[C,a,,1),(,b,,2>,<,c,,3>]
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ZIp Function

Using zip we can define a function returns the list of all pairs of adjacent elements from a list:

pairs :: [a] » [(a,a)]
pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

1(1,2),(2,3),(3,4)]

2019 Victor Ciura | @ciura_victor



ZIp Function

Using pairs we can define a function that decides if the elements in a list are sorted:

sorted :: Ord a = [a] -» Bool

sorted xs = and [x £y | (X,y) « pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False
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String Comprehensions

A string Is a sequence of characters enclosed in double quotes.
Internally, however, strings are represented as lists of characters.

abc String

means [’a’, ’b’, ’c’] :: [Char]
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String Comprehensions

Because strings are just special kinds of lists,
any polymorphic function that operates on lists can also be applied to strings.

> length "abcde”
5

> take 3 "abcde”
"abC"

> le "abc” [1,2,3,4]
[(,a,,1),(,b,,2>,<,c,,3>]
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String Comprehensions

List comprehensions can also be used to define functions on strings,
such counting how many times a character occurs in a string:

count :: Char » String » Int
count X xs = length [x’ | X’ « xs, X == Xx’]

) )

> count
3

e’ "Opend4dTech Summer School”

2019 Victor Ciura | @ciura_victor



Recursive Functions

fac 0
fac n

1
n * fac (n-1)

2019 Victor Ciura | @ciura_victor

fac 3

Y W W W Ww w W

* fac 2

¥ (2 * fac 1)

¥ (2 * (1 * fac 0))
*@2* (1 * 1))

* (2 * 1)

* 2



product :: Num

product [ ]
product (n:ns)

2019 Victor Ciura | @ciura_victor

Recursive Functions

= [a] » a

1
n * product ns

product [Z2,3,4]

2
Vi
Vi
2
24

X

Xk

Xk

Xk

product [3,4]

(3 * product [4])

(3 * (4 * product []))
G * 4 * 1))



Recursive Functions

1ength [1 ’ 2 9 3]

- 1 + length [2,3]

0 1 + (1 + length [3])

1 + length xs 1 + (1 + (1 + length [
1+ A+ A+ 0))

3

length :: [a]
length []
length (_:xs)

| I | .
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Recursive Functions

[a]
[ ]

reverse xs ++ [X]

reverse :: [ad]
reverse |[]
reverse (X:Xs)

| I | B 2

reverse [1,2,3]

reverse [2,3] ++ [1]

(reverse [3] ++ [2]) ++ [1]
((reverse [| ++ [3]) ++ [2]) ++ [1]
CCL] ++ [31) ++ [2]) ++ [1]

[3,2,1]
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Recursive & Multiple Args

zip :: [a] » [b] » [(a,b)]

z1p [] _ = []
zip _ [ ] = [
z1p (xX:xs) (y:ys) = (X,y) : zZ1p XS VS
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Recursive & Multiple Args

drop :: Int » [a] » [a]
drop 0 xs =

drop _ []
drop n (_:XS)

XS
[ ]
drop (n-1) Xxs
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Recursive & Multiple Args

(++) :: [a] » [a] » [a]
[ ] ++ YS = yS
(X:XS) ++ ys = X : (XS ++ ys)
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Quick Sort

Rules:

1. The empty list is already sorted.
2. Non-empty lists can be sorted by sorting the tail values < the head, sorting the
tail values > the head, and then appending the resulting lists on either side of the

head value.
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Quick Sort

gsort :: Ord a = [a] » [ad]

gsort [] = []
gsort (x:xs) =
gsort smaller ++ [x] ++ gsort larger
where
smaller

Larger

[a | a « Xxs, a £ x]
[b | b « xs, b > x]
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Quick Sort

q 13,2,4,1,5]

!
q L2,1] ++ [3] ++ q [4,5]
! !
q [1] ++ [2] ++ 9 [1 q L[] ++ [4] ++ q [5]
! ! l !

[1] L [ [5]
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Higher-Order Functions

A function is called higher-order if it takes a function as
an argument or returns a function as a result.

twice :: (a »> a) > a » a
twice f x = f (f x)
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Higher-Order Functions

Common programming idioms can be encoded as functions within the language itself.
Domain specific languages can be defined as collections of higher-order functions.

Algebraic properties of higher-order functions can be used to reason about programs.
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Higher-Order Functions

Give me examples from your favorite programming language/library
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Higher-Order Functions

Map

map :: (a » b) » [a] » [b]

> map (+1) [1,3,5,7]

[2,4,6,8]
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Map Function

The map function can be defined in a simple manner using a list comprehension:

map f xs = [f X | X « Xxs]

Alternatively, the map function can also be defined using recursion:

map t [] [ ]

map f (x:xs) = f x : map f Xs
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Filter Function

The higher-order function f1lter selects every element from a list that satisfies a predicate

filter :: (a »> Bool) - [a] » [a]

> filter even [1..10]

Z2,4,6,8,10]
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Filter Function

Filter can be defined using a list comprehension:

filter p xs = [X | X « xs, p X]

Alternatively, it can be defined using recursion:

filter p [] = []
filter p (x:xs)

| p X = X . filter p xs
| otherwise = filter p xs
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Foldr Function

A number of functions on lists can be defined using the following simple
pattern of recursion:

f L]
f (X:Xxs)

|
<

X ® f Xs

maps the empty list to some value , and any non-empty
list to some function applied to its and ofits
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Foldr Function

sum [ ] = v = 0
sum (X:XS) = X + sSum XS ® = +
product [ ] =1 v = 1
product (xX:xs) = X * product xs @ = *
and [} = True

and (x:xs) = x && and xs
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Foldr Function

The higher-order library function foldr (fold right) encapsulates this simple
pattern of recursion, with the function ® and the value v as arguments

sum = foldr (+) 0
product = foldr (*) 1

or = foldr (l|) False

and = foldr (&&) True
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Foldr Function

It is best to think of foldr as simultaneously replacing each (: ) in a list
by a given function, and [ | by a given value

~sum [1,2,3]
:Foldr (+) 0 [1,2,3]
~foldr (+) @ (1:(2:(3:[1D)

- 1+(2+(3+0)) . _
— place each (:)
o by and[] by
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Foldr Function

It is best to think of foldr as simultaneously replacing each (: ) in a list
by a given function, and [ | by a given value

~ product [1,2,3]
:fOldl" (*> 1 [19293]
_foldr (*) 1 (1:€2:(3:[1D))

C1*(2*(3*1))
— replace each (:)
o by and[]by
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Foldr Function

length :: [a] » Int
length [] 0
length (_:xs) =1 + length xs

length = foldr (\ _ n » 1+n) 0O
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Foldr Function

reverse :: [a] » [a]
reverse |[] = [ ]
reverse (X:XS) reverse xs ++ [x]

reverse = foldr (A\x xs »> xs ++ [x]) []
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Foldr Function

Some recursive functions on lists, such as sum, are simpler to define using foldr.
Properties of functions defined using foldr can be proved using algebraic properties of foldr

Advanced program optimizations can be simpler if foldr is used in place of explicit recursion
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Function Composition

The library function (. ) returns the composition of two functions as a single function

(.) :: (b>c¢c)->(Ca-»>b) > ((a->»>c)
f .g=XNX->1 (g x)

filter::(a -> Bool) -> [a] -> [a]
length::[a] -> Int

=>
let e = length . filter (\x -> odd x) xs
e::lnt
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Functional Patterns in C++
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Problem:;

Counting adjacent repeated values in a sequence.

How many of you solved this textbook exercise before ?
(in any programming language)
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C++ Counting adjacent repeated values in a sequence

15,8,8,2,1,1,9, 4, 4, 7}

Who wants to try it now ?
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C++ Counting adjacent repeated values in a sequence

Visual hint;

(+) @ 3

{ Q? 1? Q? ®) 1) Q) Q, 1, @ }
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C++ Counting adjacent repeated values in a sequence

Let me guess... a bunch of for loops, right ?

How about something shorter ?

An STL algorithm maybe ?
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C++ Counting adjacent repeated values in a sequence

template<class InputlItl, class Inputlt’Z,

class T,
class BinaryOperationl, class BinaryOperationZ>

T i1nner_product(InputItl firstl, InputItl lastl,
InputIt?2 firstZ, T 1nit,

BinaryOperationl opl // "sum" function
BinaryOperation2 op2) // "product"” function

1
while (firstl !'= lastl)
{
1nit = opl(init, opZ2(*firstl, *firstl));
++f1rstl;
++f1rstl;
¥

return init;
} https://en.cppreference.com/w/cpp/algorithm/inner product

110
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https://en.cppreference.com/w/cpp/algorithm/inner_product

C++ Counting adjacent repeated values in a sequence

template <typename T>
1nt count_adj_equals(const T & Xxs) // requires non-empty range
{
return std: :i1nner_product(

std: :cbegin(xs), std::cend(xs) - 1, // to penultimate elem

std: :cbegin(xs) + 1, // collection tail

0,

std: :plusi},

std: :equal_to{}); // yields boolean => @ or 1
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c++ Counting adjacent repeated values in a sequence

If you found that piece of code in a code-base,
would you understand what it does™ ?

* without my cool diagram & animation
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Counting adjacent repeated values in a sequence

Let's go back to Haskell for a few minutes...

S
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Visual hint;

)k Counting adjacent repeated values in a sequence

2019 Victor Ciura | @ciura_vi




)k Counting adjacent repeated values in a sequence

let xs =[5, 8, 8, 2, 1, 1, 9, 4, 4, 7 ]
count_1f f = length . filter f

adj_diff = mapAdjacent (-)

count_adj_equals = count_1f (==0) . adj_diff

> count_adj_equals xs
3

That's it !
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)k Counting adjacent repeated values in a sequence

Let's break it down:

// C++ // Haskell

[ ]Cauto a, auto b) { return a + b; } (\a b ->a + b)

plus{} (+)

[ ]Cauto e) ->bool { return e == 1; } (\e > e ==1)
(==1)

Lambdas & sections
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Counting adjacent repeated values in a sequence

Let's break it down:

length::[a] -> Int
filter::(a->Bool) -> [a] -> [a]l

=>

count_1if::(a->Bool) -> [a] -> Int
count_1f f = length . filter f
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)k Counting adjacent repeated values in a sequence

Let's break it down:

mapAdjacent: :(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

(-)::a ->a -> a
adj_diff = mapAdjacent (-)

=>

adj_diff::[a] -> [a]

2019 Victor Ciura | @ciura_victor



)k Counting adjacent repeated values in a sequence

Let's break it down:

count_if::(a->Bool) -> [a] -> Int
adj_diff::[a] -> [a]

count_adj_equals::[a] -> Int
count_adj_equals = count_1f (==0) . adj_diff
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)k Counting adjacent repeated values in a sequence

Let's break it down:

>
[ -
> count_1f(==0) ds
3
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)k Counting adjacent repeated values in a sequence

The algorithm

count_1f f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff
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C++ Counting adjacent repeated values in a sequence

Back to modern C++

template <typename T>
1nt count_adj_equals(const T & xs)

1

return accumulate(0,
z1p(xs, tail(xs)) | transform(equal_to{}));

C++20 Ranges
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Homework

1986:
Donald Knuth was asked to implement a program for the "Programming pearls” column in the

Communications of ACM journal.

The task:
Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

His solution written in Pascal was 10 pages long.
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Homework

Response by Doug Mcliroy was a 6-line shell script that did the same:

tr -cs A-Za-z '\n' |

tr A-Z a-z |
sort |

uniq -c¢ |
sort -rn |

sed ${1}qg
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Homework

Taking inspiration from Doug Mcliroy's UNIX shell script,

write a C++ or Haskell algorithm, that solves the same problem: word frequencies
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It's all about pipelines !
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C++ 20 Ranges

Print only the even elements of a range in reverse order:

std: :for_each( for (auto const 1 : v
std: :crbegin(v), std::crend(v), | rv::reverse
[ ]JCauto const 1) { | rv::filter(i1s_even))
1f(1s_even(1i)) {
cout << 1; cout << 1;

1) }
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C++ 20 Ranges

Skip the first 2 elements of the range and print only the even numbers of the next 3 in the range:

auto 1t = std::cbegin(v);

std: :advance(1t, 2); for (auto const 1 : v
auto 1x = 0; | rv::drop(2)
while (1t !'= cend(v) && 1x++ < 3) | rv::take(3)
{ | rv::filter(is_even))
1f (1s_even(*1t)) {
cout << (*1t); cout << 1;
1t++; }
§
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C++ 20 Ranges

Modify an unsorted range so that it retains only the unique values but in reverse order.

vector<int> v{ 21, 1, 3, 8, 13, 1, 5, 2 };
vector<int> v{ 21, 1, 3, §, 13,

std: :sort(std: :begin(v), std::end(v)); 1, 5, 2 };

v.erase( v = std::move(v) |
std: :unique(std: :begin(v), std::end(v)), ra::sort |
std: :end(v)); ra::unique |

ra::reverse;
std: :reverse(std: :begin(v), std::end(v));
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C++ 20 Ranges

Create a range of strings containing the last 3 numbers divisible to 7 in the range [101, 200],
IN reverse order.

vector<std: :string> v;

for (int n = 200, count = O; auto v = rs::iota_view(101, 201)

n >= 101 && count < 3; --n) rv::.reverse

{ if (n %7 == 0) rv::filter([ ]Cauto v? { return v%7==0; })
rv::transform(to_string)
1 : rv: :take(3)
v.push_back(to_string(n)); "
count++; | rs::to_vector;
§
¥
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C++ 20 Ranges

Until the new ISO standard lands in a compiler near you...

Eric Niebler’s implementation of the Ranges library is available here:
https://github.com/ericniebler/range-v3

It works will Clang 3.6.2 or later, gcc 5.2 or later, and MSVC 15.9 or later.

Although the standard namespace for the Ranges library is std::ranges,
in this current implementation of the library it is ranges::v3

namespace rs
namespace rv
namespace ra

ranges: :v3;
ranges: :v3::view;
ranges: :v3:.action;
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https://github.com/ericniebler/range-v3
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Higher-Order Functions

Higher Order Functions for Ordinary C++ Developers

Bjorn Fahller

compose([](auto const& s) { return s = "foo";},
std::mem fn(&foo::name))

https://github.com/rollbear/lift

Higher Order Functions — Meeting C++ 2018 © Bjoérn Fahller , @bjorn_fahller 1/93

https://www.youtube.com/watch?v=glL6zUn7iiLg



https://www.youtube.com/watch?v=qL6zUn7iiLg
https://github.com/rollbear/lift

Higher-Order Functions

boost: :hof

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/
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https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

Further Study

“Ranggs for distributed and asynchronous systems”
- lvan Cukic [ACCU 2019]

https://www.youtube.com/watch?v=eelpmWo2fuU

“C++ Algorithms in Haskell and the Haskell Playground”
- Conor Hoekstra [C++Now 2019]

https://www.youtube.com/watch?v=dTO3-1C1-t0

Functional Programming in

“Functional Programming in C++” - lvan Cukié

https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814
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https://www.youtube.com/watch?v=dTO3-1C1-t0
https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

Haskell ranges std::optional C++

algorithms STL
Maybe | Just lifting |

lambdas & closures monoids

i . values types
lazy evaluation declarative vs imperative
monads . . algebraic data types
higher order functions
map
. composition

pattern matching Fp

, expressions vs statements

pure functions
currying . o

category theory e partial application

recursion
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Historical Background

1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell
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Takeaway

"Make your code readable.

Pretend the next person who looks at your
code is a psychopath and they know where
you live."

Phil Wadler
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