Opend4Tech Summer School 2019

All Things JavaScript

Coding Pro-Practices

Curry On Functional Programming
HTML, CSS & JS In the Real World
Java vs Python: Coding Deadmatch

QOP Techniques In a Simple Game

REST In Node.JS At The React & Angular SPA
Sneak Peek Into Next Level QA (Test Automation)
Windows App Development with .NET WPF
You'll Neversea Algorithms Like These

Y/

) e 48
ROTOTYPING

NETROM

B W AR
ame e CHPHION 1)
Welcome!

DE INFORMATICA

2019 Victor Ciura | @ciura_victor 1

Opend4Tech Summer School 2019

Luni Marti Miercuri Joi Vineri ‘
24 iunie 25 iunie 26 iunie 27 iunie 28 iunie
2-4pm
4-6Dm OOP Techniques in a Simple OOP Techniques in a Simple OOP Techniques ina Simple | Windows App Development with | Windows App Development with
P Game Game Game NET WPF NET WPF
6-8pm | HTML, CSS & JS in the Real World | HTML, CSS & JS in the Real World | HTML, CSS & JS in the Real World| V@ VS Python: Coding SRR PILE B
Deathmatch Deathmatch
1iulie 2 julie 3 iulie 4 iulie 5 iulie

2-4pm _

4-6pm Coding Pro-Practices Coding Pro-Practices Coding Pro-Practices You'll Neversea Algorithms Like | You'll Neversea Algorithms Like
These These
6-80m Java vs Python: Coding Sneak Peek Into Next Level QA Sneak Peek Into Next Level QA Curry On Functional Curry On Functional
P Deathmatch (Test Automation) (Test Automation) Programming Programming
8 iulie 9 iulie 10 iulie 11 iulie 12 iulie
2-4pm
You'll Neversea Algorithms Like
4-6pm
These
6-8pm Curry On Functional
Programming
http://inf.ucv.ro/~summer-school/ https://www.caphyon.ro/opend4tech-2019.html

2019 Victor Ciura | @ciura_victor 2

® L
OpendTech

Summer School 2019
24 iunie - 12 iulie

))_ Curry On
N - -
Functional Programming
July, 2019
Craiova
.‘ CAPHYON W @ciura_victor \T,;i?.:c::ﬂzd, Caphyon

www.caphyon.ro

http://www.caphyon.ro
https://twitter.com/ciura_victor

Abstract

Can a language whose official motto is “Avoid Success at All Costs” teach us new tricks in modern
programming languages?

If Haskell is so great, why hasn't it taken over the world? My claim is that it has. But not as a Roman
legion loudly marching in a new territory, rather as distributed Trojan horses popping in at the gates,
masqguerading as modern features or novel ideas in today’s mainstream languages. Functional
Programming ideas that have been around for over 40 years will be rediscovered to solve our current
software complexity problems.

Indeed, modern programming languages have become more functional. From mundane concepts like
lambdas & closures, function objects, values types and constants, to composability of algorithms,
ranges, folding, mapping or even higher-order functions.

In this workshop we’ll analyze a bunch of FP technigues and see how they help make our code shorter,
clearer and faster, by embracing a declarative vs. an imperative style. Brace yourselves for a bumpy ride
including composition, lifting, currying, partial application, pure functions, maybe even pattern matching
and lazy evaluation.

Spoiler: no unicorns here.

2019 Victor Ciura | @ciura_victor

5

Advanced Installer

2019 Victor Ciura | @ciura_victor

https://twitter.com/ciura_victor
https://www.advancedinstaller.com
http://www.clangpowertools.com

Curry On
Functional Programming

What ig it all about ?

Haskell ranges std::optional C++

algorithms STL
Maybe | Just lifting |

lambdas & closures monoids

i . values types
lazy evaluation declarative vs imperative
monads . . algebraic data types
higher order functions
map
. composition

pattern matching Fp

, expressions vs statements

pure functions
currying . o

category theory e partial application

recursion

2019 Victor Ciura | @ciura_victor

Paradox of Programming

Machine/Human impedance mismatch:

o Local/Global perspective
© Progress/Goal oriented

o Detail/ldea

© Vast/Limited memory

o Pretty reliable/Error prone

o Machine language/Mathematics

Is it easier to think like a machine than to do math?

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU

2019 Victor Ciura | @ciura_victor

https://www.youtube.com/watch?v=JH_Ou17_zyU

Semantics

~ The meaning of a program
~ Operational semantics: local, progress oriented
 EXxecute program on an abstract machine in your brain
~ Denotational semantics
* [ranslate program to math

~ Math: an ancient language developed for humans

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU

2019 Victor Ciura | @ciura_victor

https://www.youtube.com/watch?v=JH_Ou17_zyU

What is Functional Programming ?

* Functional programming is a style of programming in which the basic method of
computation is the application of functions to arguments

* A functional language is one that supports and encourages the functional style

2019 Victor Ciura | @ciura_victor

Let s address the m in the room...

»eHaskel l

Second Edition

https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/

2019 Victor Ciura | @ciura_victor

https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/

A functional language Is one that supports
and encourages the functional style

What do you mean 2

Summing the integers 1 to 10 in C++/Java/C#

int total = ©;
for (int 1 = 1; i £ 10; i++)
total = total + 1;

The computation method iIs variable assignment.

2019 Victor Ciura | @ciura_victor

Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.

2019 Victor Ciura | @ciura_victor

Universitatea din nrama

DEPARTAMENTUL
DE IIlfllIlMIlle'll

Ocale s g € 0 cariera de succes
C mpt r Science!

f

Studii universitare de lice

F‘""*Mﬁ-bnmma.m efeir
. Mildlmvﬂdm

e * nitate prin programl Erasmus

Pas:unea

devine
profesie!

Sneak Peek Into Next Level QA (Test Automation) - Antonio Valent

2019 Victor Ciura | @ciura_victor

Historical Background

2019 Victor Ciura | @ciura_victor

Historical Background

Most of the "new"” ideas and innovations in modern
programming languages are actually very old...

2019 Victor Ciura | @ciura_victor

Historical Background

1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

2019 Victor Ciura | @ciura_victor

Historical Background

1950s

John McCarthy develops Lisp, the first functional language, with some
Influences from the lambda calculus, but retaining variable assignments

2019 Victor Ciura | @ciura_victor

Historical Background

1960s

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments

2019 Victor Ciura | @ciura_victor

Historical Background

1970s

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs

2019 Victor Ciura | @ciura_victor

Historical Background

1970s

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types

2019 Victor Ciura | @ciura_victor

Historical Background

1970-80s

David Turner develops a number of lazy functional languages,
culminating in the Miranda system

2019 Victor Ciura | @ciura_victor

Historical Background

1987

»=-Haskell

An advanced purely-functional programming language

An international committee starts the development of Haskell,
a standard lazy functional language

2019 Victor Ciura | @ciura_victor

Historical Background

1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

2019 Victor Ciura | @ciura_victor

Historical Background

2003
2010

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010

2019 Victor Ciura | @ciura_victor

Historical Background

2010-2019

- standard distribution

< library support

Haskell
Platform

Haskell with batteries included

-~ new language features

- development tools

~ use In industry

o Influence on other languages

2019 Victor Ciura | @ciura_victor

A Taste of Haskell

f L] = L]
f (x:xs) =t ys ++ [x] ++ f zs
where
ys = [a | a « xs, a £ x]
zs = |[b | b « xs, b > x]

What does f do ?

2019 Victor Ciura | @ciura_victor

Standard Prelude

Haskell comes with a large number of standard library functions

Select the first element of a list:

> head [1,2,3,4,5]
1

Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

2019 Victor Ciura | @ciura_victor

Standard Prelude

Select the nth element of a list:

> [1,2,3,4,5] !'! 2
3

Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]

2019 Victor Ciura | @ciura_victor

Standard Prelude

Remove the first n elements from a list:
> drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:
> length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:
> sum [1,2,3,4,5]
15

2019 Victor Ciura | @ciura_victor

Standard Prelude

Calculate the product of a list of numbers:
> product [1,2,3,4,5]
120

Append two lists:
> [1,2,3] ++ [4,5]
11,2,3,4,5]

Reverse a list:
> reverse [1,2,3,4,5]
[5,4,3,2,1]

2019 Victor Ciura | @ciura_victor

Function Application

f ab + c*d

f appliedtoaandb

Function application is assumed to have higher priority than all other operators:

fa+b

means (f a) + b rather than f (a + b)

2019 Victor Ciura | @ciura_victor

Function Application

Mathematics Haskell
f(x) f X
FCx,y) Fxy
FCg(x)) f (g x)
F(x,9Cy)) fx (g y)

f(x) g(y) fx*gy

2019 Victor Ciura | @ciura_victor

My First Function

double X = X + X

guadruple x = double (double x)

> quadruple 10
40

> take (double 2) [1,2,3,4,5,0]
[1,2,3,4]

2019 Victor Ciura | @ciura_victor

InfiX Functions

AN

average ns = sum ns div length ns

X f Y isjust syntactic sugar for f X Y

2019 Victor Ciura | @ciura_victor

The Layout Rule

The layout rule avoids the need for explicit
syntax to indicate the grouping of definitions

d=b + C a=Db + C
where where
b = 1 means < {b = 1;
C =2 cC = 2}
d=a * 2 d=a * 2

implicit grouping explicit grouping

2019 Victor Ciura | @ciura_victor

Types In Haskell

If evaluating an expression € would produce a value of type t,

then © has type T, writtenas € . €

Every well formed expression has a type, which can be automatically
calculated at compile time using a process called type inference

All type errors are found at compile time,
=> makes programs safer and faster by removing the need for type checks at run time

2019 Victor Ciura | @ciura_victor

List Types

A list Is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

[L"'a’],[’b”,"c’ 1] ¢ [[Char]]

2019 Victor Ciura | @ciura_victor

Tuple Types

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

2019 Victor Ciura | @ciura_victor

Function lypes

A function is a mapping from values of one type to values of
another type:

not :: Bool » Bool

even :: Int » Bool

2019 Victor Ciura | @ciura_victor

Function lypes

add :: (Int,Int) » Int
add (X,y) = X+y

zeroto :: Int - [Int]
zeroto n = [0. .n]

2019 Victor Ciura | @ciura_victor

2019 Victor Ciura | @ciura_victor

Curried Functions

Functions with multiple arguments are also
possible by returning functions as results:

add’ :: Int - (Int - Int)
add’ X y = X+y

takes an integer and returns a function
In turn, this new function takes an integer

and returns the result

Curried Functions

add and add’ produce the same final result,
but add takes its two arguments at the same time,
whereas add’ takes them one at a time:

add :: (Int,Int) » Int

add’ :: Int » (Int » Int)

Functions that take their arguments one at a time are called curried functions,
celebrating the work of Haskell Curry on such functions.

2019 Victor Ciura | @ciura_victor

Curried Functions

Functions with more than two arguments can
be curried by returning nested functions:

mult :: Int » (Int »> (Int - Int))
mult X y z = x*y*z

takes an integer and returns a function , Which In

turn takes an integer and returns a function , Which
finally takes an integer and returns the result

2019 Victor Ciura | @ciura_victor

Curried Functions

Curried functions are more flexible than functions on tuples,
because useful functions can often be made
by partially applying a curried function.

add’ 1 :: Int » Int
take 5 :: [Int] - [Int]

drop 5 :: [Int] » [Int]

2019 Victor Ciura | @ciura_victor

Currying Conventions

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Int » Int » Int » Int

The arrow — associates to the right

same as: Int » (Int » (Int » Int))

2019 Victor Ciura | @ciura_victor

Currying Conventions

As a consequence, it is then natural for
function application to associate to the left

mult X y z

Unless tupling is explicitly required,
all functions in Haskell are normally defined In curried form

2019 Victor Ciura | @ciura_victor

Polymorphic Functions

A function is called polymorphic if its type contains
one or more type variables

length :: [a] » Int

For any type , Length takes a list of
values of type and returns an integer

2019 Victor Ciura | @ciura_victor

Polymorphic Functions

Type variables can be instantiated to different
types in different circumstances:

> length [False,True]

2

> length [1,2,3,4] —l

4

Type variables must begin with a lower-case letter,
and are usually named a, b, c...

2019 Victor Ciura | @ciura_victor

Polymorphic Functions

Many of the functions defined in the standard prelude are polymorphic:
fst :: (a,b) » a
head :: [a] -» a
take :: Int - [a] - [a]

zip :: [a] » [b] » [(a,b)]

1d :: a - d

2019 Victor Ciura | @ciura_victor

Guarded Equations

abs :: Int - Int
abs n = 1f n =2 0 then n else -n

As an alternative to conditionals,
functions can also be defined using guarded equations

abs n | n > 0
| otherwise

|
-
-

2019 Victor Ciura | @ciura_victor

Guarded Equations

signum :: Int » Int
signum n = 1f n < @ then -1 else
1f n == 0 then 0 else 1

Guarded equations can be used to make definitions involving multiple conditions easier to read:

signum n | n < @ = -1
| N == = 0
| otherwise =1

The catch all condition otherwise is defined in the prelude by otherwise = True

2019 Victor Ciura | @ciura_victor

Pattern Matching

not :: Bool » Bool
not False True
not True False

2019 Victor Ciura | @ciura_victor

Pattern Matching

(&&) :: Bool » Bool -» Bool
True && True = True

True && False = False
False && True = False
False && False = False

can be defined more compactly by:

(&&) :: Bool » Bool -» Bool
True && True True
&& False

underscore symbol _ is a wildcard pattern that matches any argument value

2019 Victor Ciura | @ciura_victor 55

Pattern Matching

However, the following definition is more efficient,
because it avoids evaluating the second argument if the first argument is False

(&&) :: Bool » Bool -» Bool
True && b = b
False && _ = False

underscore symbol _ is a wildcard pattern that matches any argument value

2019 Victor Ciura | @ciura_victor 56

Pattern Matching

Patterns are matched in order.
The following definition always returns False:

False
True

_ Q& _
True && True

2019 Victor Ciura | @ciura_victor

List Patterns

Internally, every non-empty list is constructed by repeated use of an
operator (:) called “cons” that adds an element to the start of a list

1,2,3,4]

means 1:(2:(3:(4:11)))

2019 Victor Ciura | @ciura_victor

List Patterns (x:xs)

Functions on lists can be defined using X . XS patterns

head :: [a] » a
head (x:_) = X

tail :: [a] -» [ad]
tail (_:Xs) = Xs

X:Xs patterns only match non-empty lists:

> head []
¥¥* Exception: empty list

2019 Victor Ciura | @ciura_victor

Lambda Expressions

AX > X 4+ X

\X » X + X

the nameless function that takes a number
and returns the result

2019 Victor Ciura | @ciura_victor

Lambda Expressions

Lambda expressions can be used to avoid naming functions that are only referenced once

odds n = map f [0..n-1]
where
f x = x*¥2 + 1

can be simplified to:

odds n = map (\x » x*2 + 1) [0..n-1]

2019 Victor Ciura | @ciura_victor

Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets

f x2 | x e {1...5} }

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1...5}

2019 Victor Ciura | @ciura_victor

Set Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists

[xA2 | x « [1..5]]

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1...5}

2019 Victor Ciura | @ciura_victor

Set Comprehensions

[xA2 | x « [1..5]]

The expression x < [1..5] is called a generator,
as it states how to generate values for x

Comprehensions can have multiple generators, separated by commas:

> [(x,y) | x « [1,2,3], ¥y « [4,5]]

1(1,4),(1,5),0,4),(2,5),(3,4),(3,5)]

2019 Victor Ciura | @ciura_victor

Set Comprehensions

Changing the order of the generators changes the order of the elements in the final list:

> LOGy) |y < [4,5], x < [1,2,3]]

1(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with later generators as more
deeply nested loops whose variables change value more frequently.

2019 Victor Ciura | @ciura_victor

Set Comprehensions

> [(Gy) |y < [4,5], x <« [1,2,3]]

1(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x + [1,2,3] is the last generator, so the value of the x
component of each pair changes most frequently.

2019 Victor Ciura | @ciura_victor

Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators

LOGy) |x < [1..3], y <« [x..3]]

The list [Cl,l),(l,Z),Cl,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (X,Yy) such that x,y are elements

ofthelist [1..3] andy > X

2019 Victor Ciura | @ciura_victor

Dependant Generators

Using a dependant generator we can define the library function that concatenates a list of lists:

concat :: [[a]l]l -» [a]
concat xss = [X | Xs « Xxss, X « XS]

> concat [[1,2,3],[4,5],[6]]

1,2,3,4,5,6]

2019 Victor Ciura | @ciura_victor

Guards

List comprehensions can use guards to restrict the values produced by earlier generators

[IXx | x « [1..10], even X]

The list [2,4,6,8,10] of all numbers such that
is an element of the list [1..10] and is

2019 Victor Ciura | @ciura_victor

Guards

Using a guard we can define a function that maps a positive integer to its list of factors:

factors :: Int - [Int]
factors n = [xX | x « [1..n], n mod X == 0]

> factors 15

[1,3,5,15]

2019 Victor Ciura | @ciura_victor

Guards

A positive integer is prime if its only factors are 1 and itself.
Using factors we can define a function that decides if a number is prime:

prime :: Int » Bool
prime n = factors n == [1,n]

> prime 15
False

> prime 7
True

2019 Victor Ciura | @ciura_victor

Guards

Using a guard we can now define a function that returns the list of all primes up to a given Iimit:

primes :: Int » [Int]
primes n = [Xx | x « [2..n], prime Xx]

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

2019 Victor Ciura | @ciura_victor

ZIp Function

A useful library function is zip, which maps two lists to a list of pairs of their corresponding elements

zip :: [a] » [b] » [(Ca,b)]

> Z'Lp [,Cl,,,b,,,c,] [1:Z:3a4:|

[C,a,,1),(,b,,2>,<,c,,3>]

2019 Victor Ciura | @ciura_victor

ZIp Function

Using zip we can define a function returns the list of all pairs of adjacent elements from a list:

pairs :: [a] » [(a,a)]
pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

1(1,2),(2,3),(3,4)]

2019 Victor Ciura | @ciura_victor

ZIp Function

Using pairs we can define a function that decides if the elements in a list are sorted:

sorted :: Ord a = [a] -» Bool

sorted xs = and [x £y | (X,y) « pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False

2019 Victor Ciura | @ciura_victor

String Comprehensions

A string Is a sequence of characters enclosed in double quotes.
Internally, however, strings are represented as lists of characters.

abc String

means [’a’, ’b’, ’c’] :: [Char]

2019 Victor Ciura | @ciura_victor

String Comprehensions

Because strings are just special kinds of lists,
any polymorphic function that operates on lists can also be applied to strings.

> length "abcde”
5

> take 3 "abcde”
"abC"

> le "abc” [1,2,3,4]
[(,a,,1),(,b,,2>,<,c,,3>]

2019 Victor Ciura | @ciura_victor

String Comprehensions

List comprehensions can also be used to define functions on strings,
such counting how many times a character occurs in a string:

count :: Char » String » Int
count X xs = length [x’ | X’ « xs, X == Xx’]

))

> count
3

e’ "Opend4dTech Summer School”

2019 Victor Ciura | @ciura_victor

Recursive Functions

fac 0
fac n

1
n * fac (n-1)

2019 Victor Ciura | @ciura_victor

fac 3

Y W W W Ww w W

* fac 2

¥ (2 * fac 1)

¥ (2 * (1 * fac 0))
@2 (1 * 1))

* (2 * 1)

* 2

product :: Num

product []
product (n:ns)

2019 Victor Ciura | @ciura_victor

Recursive Functions

= [a] » a

1
n * product ns

product [Z2,3,4]

2
Vi
Vi
2
24

X

Xk

Xk

Xk

product [3,4]

(3 * product [4])

(3 * (4 * product []))
G * 4 * 1))

Recursive Functions

1ength [1 ’ 2 9 3]

- 1 + length [2,3]

0 1 + (1 + length [3])

1 + length xs 1 + (1 + (1 + length [
1+ A+ A+ 0))

3

length :: [a]
length []
length (_:xs)

| I | .

2019 Victor Ciura | @ciura_victor

Recursive Functions

[a]
[]

reverse xs ++ [X]

reverse :: [ad]
reverse |[]
reverse (X:Xs)

| I | B 2

reverse [1,2,3]

reverse [2,3] ++ [1]

(reverse [3] ++ [2]) ++ [1]
((reverse [| ++ [3]) ++ [2]) ++ [1]
CCL] ++ [31) ++ [2]) ++ [1]

[3,2,1]

2019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

zip :: [a] » [b] » [(a,b)]

z1p [] _ = []
zip _ [] = [
z1p (xX:xs) (y:ys) = (X,y) : zZ1p XS VS

2019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

drop :: Int » [a] » [a]
drop 0 xs =

drop _ []
drop n (_:XS)

XS
[]
drop (n-1) Xxs

2019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

(++) :: [a] » [a] » [a]
[] ++ YS = yS
(X:XS) ++ ys = X : (XS ++ ys)

2019 Victor Ciura | @ciura_victor

Quick Sort

Rules:

1. The empty list is already sorted.
2. Non-empty lists can be sorted by sorting the tail values < the head, sorting the
tail values > the head, and then appending the resulting lists on either side of the

head value.

2019 Victor Ciura | @ciura_victor

Quick Sort

gsort :: Ord a = [a] » [ad]

gsort [] = []
gsort (x:xs) =
gsort smaller ++ [x] ++ gsort larger
where
smaller

Larger

[a | a « Xxs, a £ x]
[b | b « xs, b > x]

2019 Victor Ciura | @ciura_victor

Quick Sort

q 13,2,4,1,5]

!
q L2,1] ++ [3] ++ q [4,5]
! !
q [1] ++ [2] ++ 9 [1 q L[] ++ [4] ++ q [5]
! ! l !

[1] L [[5]

2019 Victor Ciura | @ciura_victor

Higher-Order Functions

A function is called higher-order if it takes a function as
an argument or returns a function as a result.

twice :: (a »> a) > a » a
twice f x = f (f x)

2019 Victor Ciura | @ciura_victor

Higher-Order Functions

Common programming idioms can be encoded as functions within the language itself.
Domain specific languages can be defined as collections of higher-order functions.

Algebraic properties of higher-order functions can be used to reason about programs.

2019 Victor Ciura | @ciura_victor

Higher-Order Functions

Give me examples from your favorite programming language/library

2019 Victor Ciura | @ciura_victor

Higher-Order Functions

Map

map :: (a » b) » [a] » [b]

> map (+1) [1,3,5,7]

[2,4,6,8]

2019 Victor Ciura | @ciura_victor

Map Function

The map function can be defined in a simple manner using a list comprehension:

map f xs = [f X | X « Xxs]

Alternatively, the map function can also be defined using recursion:

map t [] []

map f (x:xs) = f x : map f Xs

2019 Victor Ciura | @ciura_victor

Filter Function

The higher-order function f1lter selects every element from a list that satisfies a predicate

filter :: (a »> Bool) - [a] » [a]

> filter even [1..10]

Z2,4,6,8,10]

2019 Victor Ciura | @ciura_victor

Filter Function

Filter can be defined using a list comprehension:

filter p xs = [X | X « xs, p X]

Alternatively, it can be defined using recursion:

filter p [] = []
filter p (x:xs)

| p X = X . filter p xs
| otherwise = filter p xs

2019 Victor Ciura | @ciura_victor

Foldr Function

A number of functions on lists can be defined using the following simple
pattern of recursion:

f L]
f (X:Xxs)

|
<

X ® f Xs

maps the empty list to some value , and any non-empty
list to some function applied to its and ofits

2019 Victor Ciura | @ciura_victor

Foldr Function

sum [] = v = 0
sum (X:XS) = X + sSum XS ® = +
product [] =1 v = 1
product (xX:xs) = X * product xs @ = *
and [} = True

and (x:xs) = x && and xs

2019 Victor Ciura | @ciura_victor

Foldr Function

The higher-order library function foldr (fold right) encapsulates this simple
pattern of recursion, with the function ® and the value v as arguments

sum = foldr (+) 0
product = foldr (*) 1

or = foldr (l|) False

and = foldr (&&) True

2019 Victor Ciura | @ciura_victor

Foldr Function

It is best to think of foldr as simultaneously replacing each (:) in a list
by a given function, and [| by a given value

~sum [1,2,3]
:Foldr (+) 0 [1,2,3]
~foldr (+) @ (1:(2:(3:[1D)

- 1+(2+(3+0)) . _
— place each (:)
o by and[] by

2019 Victor Ciura | @ciura_victor

Foldr Function

It is best to think of foldr as simultaneously replacing each (:) in a list
by a given function, and [| by a given value

~ product [1,2,3]
:fOldl" (*> 1 [19293]
_foldr (*) 1 (1:€2:(3:[1D))

C1*(2*(3*1))
— replace each (:)
o by and[]by

2019 Victor Ciura | @ciura_victor

Foldr Function

length :: [a] » Int
length [] 0
length (_:xs) =1 + length xs

length = foldr (\ _ n » 1+n) 0O

2019 Victor Ciura | @ciura_victor

Foldr Function

reverse :: [a] » [a]
reverse |[] = []
reverse (X:XS) reverse xs ++ [x]

reverse = foldr (A\x xs »> xs ++ [x]) []

2019 Victor Ciura | @ciura_victor

Foldr Function

Some recursive functions on lists, such as sum, are simpler to define using foldr.
Properties of functions defined using foldr can be proved using algebraic properties of foldr

Advanced program optimizations can be simpler if foldr is used in place of explicit recursion

2019 Victor Ciura | @ciura_victor

Function Composition

The library function (.) returns the composition of two functions as a single function

(.) :: (b>c¢c)->(Ca-»>b) > ((a->»>c)
f .g=XNX->1 (g x)

filter::(a -> Bool) -> [a] -> [a]
length::[a] -> Int

=>
let e = length . filter (\x -> odd x) xs
e::lnt

2019 Victor Ciura | @ciura_victor

Functional Patterns in C++

2019 Victor Ciura | @ciura_victor

Problem:;

Counting adjacent repeated values in a sequence.

How many of you solved this textbook exercise before ?
(in any programming language)

2019 Victor Ciura | @ciura_victor

C++ Counting adjacent repeated values in a sequence

15,8,8,2,1,1,9, 4, 4, 7}

Who wants to try it now ?

2019 Victor Ciura | @ciura_victor

C++ Counting adjacent repeated values in a sequence

Visual hint;

(+) @ 3

{ Q? 1? Q? ®) 1) Q) Q, 1, @ }

ctor

>
©
.-
E
o
®
(\
P
=
O
P
O
el
=
>
(o))
)
o
(9|

C++ Counting adjacent repeated values in a sequence

Let me guess... a bunch of for loops, right ?

How about something shorter ?

An STL algorithm maybe ?

2019 Victor Ciura | @ciura_victor

C++ Counting adjacent repeated values in a sequence

template<class InputlItl, class Inputlt’Z,

class T,
class BinaryOperationl, class BinaryOperationZ>

T i1nner_product(InputItl firstl, InputItl lastl,
InputIt?2 firstZ, T 1nit,

BinaryOperationl opl // "sum" function
BinaryOperation2 op2) // "product"” function

1
while (firstl !'= lastl)
{
1nit = opl(init, opZ2(*firstl, *firstl));
++f1rstl;
++f1rstl;
¥

return init;
} https://en.cppreference.com/w/cpp/algorithm/inner product

110

2019 Victor Ciura | @ciura_victor

https://en.cppreference.com/w/cpp/algorithm/inner_product

C++ Counting adjacent repeated values in a sequence

template <typename T>
1nt count_adj_equals(const T & Xxs) // requires non-empty range
{
return std: :i1nner_product(

std: :cbegin(xs), std::cend(xs) - 1, // to penultimate elem

std: :cbegin(xs) + 1, // collection tail

0,

std: :plusi},

std: :equal_to{}); // yields boolean => @ or 1

2019 Victor Ciura | @ciura_victor

c++ Counting adjacent repeated values in a sequence

If you found that piece of code in a code-base,
would you understand what it does™ ?

* without my cool diagram & animation

2019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

Let's go back to Haskell for a few minutes...

S

2019 Victor Ciura | @ciura_victor

0) & 3

L
(o
e
(&)

[_31 Qa 6, 1) ®3 _8a Sa ®: -3] (

Visual hint;

)k Counting adjacent repeated values in a sequence

2019 Victor Ciura | @ciura_vi

)k Counting adjacent repeated values in a sequence

let xs =[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]
count_1f f = length . filter f

adj_diff = mapAdjacent (-)

count_adj_equals = count_1f (==0) . adj_diff

> count_adj_equals xs
3

That's it !

2019 Victor Ciura | @ciura_victor

)k Counting adjacent repeated values in a sequence

Let's break it down:

// C++ // Haskell

[]Cauto a, auto b) { return a + b; } (\a b ->a + b)

plus{} (+)

[]Cauto e) ->bool { return e == 1; } (\e > e ==1)
(==1)

Lambdas & sections

2019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

Let's break it down:

length::[a] -> Int
filter::(a->Bool) -> [a] -> [a]l

=>

count_1if::(a->Bool) -> [a] -> Int
count_1f f = length . filter f

2019 Victor Ciura | @ciura_victor

)k Counting adjacent repeated values in a sequence

Let's break it down:

mapAdjacent: :(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

(-)::a ->a -> a
adj_diff = mapAdjacent (-)

=>

adj_diff::[a] -> [a]

2019 Victor Ciura | @ciura_victor

)k Counting adjacent repeated values in a sequence

Let's break it down:

count_if::(a->Bool) -> [a] -> Int
adj_diff::[a] -> [a]

count_adj_equals::[a] -> Int
count_adj_equals = count_1f (==0) . adj_diff

2019 Victor Ciura | @ciura_victor

)k Counting adjacent repeated values in a sequence

Let's break it down:

>
[-
> count_1f(==0) ds
3

2019 Victor Ciura | @ciura_victor

)k Counting adjacent repeated values in a sequence

The algorithm

count_1f f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff

2019 Victor Ciura | @ciura_victor

C++ Counting adjacent repeated values in a sequence

Back to modern C++

template <typename T>
1nt count_adj_equals(const T & xs)

1

return accumulate(0,
z1p(xs, tail(xs)) | transform(equal_to{}));

C++20 Ranges

2019 Victor Ciura | @ciura_victor

Homework

1986:
Donald Knuth was asked to implement a program for the "Programming pearls” column in the

Communications of ACM journal.

The task:
Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

His solution written in Pascal was 10 pages long.

2019 Victor Ciura | @ciura_victor

Homework

Response by Doug Mcliroy was a 6-line shell script that did the same:

tr -cs A-Za-z '\n' |

tr A-Z a-z |
sort |

uniq -c¢ |
sort -rn |

sed ${1}qg

2019 Victor Ciura | @ciura_victor

Homework

Taking inspiration from Doug Mcliroy's UNIX shell script,

write a C++ or Haskell algorithm, that solves the same problem: word frequencies

2019 Victor Ciura | @ciura_victor

It's all about pipelines !

2019 Victor Ciura | @ciura_victor

C++ 20 Ranges

Print only the even elements of a range in reverse order:

std: :for_each(for (auto const 1 : v
std: :crbegin(v), std::crend(v), | rv::reverse
[]JCauto const 1) { | rv::filter(i1s_even))
1f(1s_even(1i)) {
cout << 1; cout << 1;

1) }

2019 Victor Ciura | @ciura_victor

C++ 20 Ranges

Skip the first 2 elements of the range and print only the even numbers of the next 3 in the range:

auto 1t = std::cbegin(v);

std: :advance(1t, 2); for (auto const 1 : v
auto 1x = 0; | rv::drop(2)
while (1t !'= cend(v) && 1x++ < 3) | rv::take(3)
{ | rv::filter(is_even))
1f (1s_even(*1t)) {
cout << (*1t); cout << 1;
1t++; }
§

2019 Victor Ciura | @ciura_victor

C++ 20 Ranges

Modify an unsorted range so that it retains only the unique values but in reverse order.

vector<int> v{ 21, 1, 3, 8, 13, 1, 5, 2 };
vector<int> v{ 21, 1, 3, §, 13,

std: :sort(std: :begin(v), std::end(v)); 1, 5, 2 };

v.erase(v = std::move(v) |
std: :unique(std: :begin(v), std::end(v)), ra::sort |
std: :end(v)); ra::unique |

ra::reverse;
std: :reverse(std: :begin(v), std::end(v));

2019 Victor Ciura | @ciura_victor

C++ 20 Ranges

Create a range of strings containing the last 3 numbers divisible to 7 in the range [101, 200],
IN reverse order.

vector<std: :string> v;

for (int n = 200, count = O; auto v = rs::iota_view(101, 201)

n >= 101 && count < 3; --n) rv::.reverse

{ if (n %7 == 0) rv::filter([]Cauto v? { return v%7==0; })
rv::transform(to_string)
1 : rv: :take(3)
v.push_back(to_string(n)); "
count++; | rs::to_vector;
§
¥

2019 Victor Ciura | @ciura_victor

C++ 20 Ranges

Until the new ISO standard lands in a compiler near you...

Eric Niebler’s implementation of the Ranges library is available here:
https://github.com/ericniebler/range-v3

It works will Clang 3.6.2 or later, gcc 5.2 or later, and MSVC 15.9 or later.

Although the standard namespace for the Ranges library is std::ranges,
in this current implementation of the library it is ranges::v3

namespace rs
namespace rv
namespace ra

ranges: :v3;
ranges: :v3::view;
ranges: :v3:.action;

2019 Victor Ciura | @ciura_victor

https://github.com/ericniebler/range-v3

2019 Victor Ciura | @ciura_victor

Higher-Order Functions

Higher Order Functions for Ordinary C++ Developers

Bjorn Fahller

compose([](auto const& s) { return s = "foo";},
std::mem fn(&foo::name))

https://github.com/rollbear/lift

Higher Order Functions — Meeting C++ 2018 © Bjoérn Fahller , @bjorn_fahller 1/93

https://www.youtube.com/watch?v=glL6zUn7iiLg

https://www.youtube.com/watch?v=qL6zUn7iiLg
https://github.com/rollbear/lift

Higher-Order Functions

boost: :hof

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

2019 Victor Ciura | @ciura_victor

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

Further Study

“Ranggs for distributed and asynchronous systems”
- lvan Cukic [ACCU 2019]

https://www.youtube.com/watch?v=eelpmWo2fuU

“C++ Algorithms in Haskell and the Haskell Playground”
- Conor Hoekstra [C++Now 2019]

https://www.youtube.com/watch?v=dTO3-1C1-t0

Functional Programming in

“Functional Programming in C++” - lvan Cukié

https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

2019 Victor Ciura | @ciura_victor

https://www.youtube.com/watch?v=eelpmWo2fuU
https://www.youtube.com/watch?v=dTO3-1C1-t0
https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

Haskell ranges std::optional C++

algorithms STL
Maybe | Just lifting |

lambdas & closures monoids

i . values types
lazy evaluation declarative vs imperative
monads . . algebraic data types
higher order functions
map
. composition

pattern matching Fp

, expressions vs statements

pure functions
currying . o

category theory e partial application

recursion

2019 Victor Ciura | @ciura_victor

Historical Background

1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

2019 Victor Ciura | @ciura_victor

Takeaway

"Make your code readable.

Pretend the next person who looks at your
code is a psychopath and they know where
you live."

Phil Wadler

2019 Victor Ciura | @ciura_victor

® L
OpendTech

Summer School 2019
24 iunie - 12 iulie

))_ Curry On
N - -
Functional Programming
July, 2019
Craiova
.‘ CAPHYON W @ciura_victor \T,;i?.:c::ﬂzd, Caphyon

www.caphyon.ro

https://twitter.com/ciura_victor
http://www.caphyon.ro

