
2020: The Year of Sanitizers?

Victor Ciura
Principal Engineer

@ciura_victor

https://twitter.com/ciura_victor
https://twitter.com/ciura_victor

2

Abstract

 Clang-tidy is the go-to assistant for most C++ programmers looking to improve their code, whether to
modernize it or to find hidden bugs with its built-in checks. Static analysis is great, but you also get tons of
false positives.

 Now that you’re hooked on smart tools, you have to try dynamic/runtime analysis. After years of
improvements and successes for Clang and GCC users, LLVM AddressSanitizer (ASan) is finally available on
Windows, in the latest Visual Studio 2019 versions. Let's find out how this experience is for MSVC projects.

 We’ll see how AddressSanitizer works behind the scenes (compiler and ASan runtime) and analyze the
instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples diagnosed by
ASan and see how easy it is to read memory snapshots in Visual Studio, to pinpoint the failure.

 Want to unleash the memory vulnerability beast? Put your test units on steroids, by spinning fuzzing jobs
with ASan in Azure, leveraging the power of the Cloud from the comfort of your Visual Studio IDE.

2020 Victor Ciura | @ciura_victor - 2020: The Year of Sanitizers?

New venue,
same great C++ conference

2019
~~~~~~



4



52020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

New venue,  
same great C++ conference2020



62020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Have a great  

CppCon week, 

everyone !



72020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

❓
Due to the nature of delivery medium &  
streaming delays (up to 15-20 sec),  
I prefer to take questions at the end*

Q & A
* Visual C++ team available in Remo to answer your questions live

#sig_visual_studio on CppCon Slack

https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3
https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3


82020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

2020: The Year of Sanitizers?



92020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Vignette in 3 parts 

Static Analysis 

Dynamic Analysis 

Warm Fuzzy Feelings



102020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Humans Depend on Tools



112020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Programmers Depend on Tools
good code editor 

(or IDE)
recent compiler(s) 
[conformant/strict]

powerful (visual) debugger

linter/formatter

test framework

perf profiler

CI/CD service

SCM client

package manager

static analyzer

dynamic analyzer 
(runtime)

automated refactoring tools

build system

+ fuzzing
code reviews platform



12

17 year old code base under active development 
3.5 million lines of C++ code

a few brave nerds…

or 

“How we manage to clang-tidy our whole code base, 
while maintaining our monthly release cycle”

Why Do I Care ?

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://www.youtube.com/watch?v=Wl-9ozmxXbo

(CppCon 2017)

https://www.youtube.com/watch?v=Wl-9ozmxXbo
https://www.youtube.com/watch?v=Wl-9ozmxXbo


Who Am I ?

13

Advanced Installer Clang Power Tools

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

@ciura_victor

https://www.advancedinstaller.com
https://www.advancedinstaller.com
http://www.clangpowertools.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor
https://twitter.com/ciura_victor


142020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Part I 

Static Analysis



152020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

C++ Core Guidelines Checker

docs.microsoft.com/en-us/cpp/code-quality/quick-start-code-analysis-for-c-cpp

docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck

devblogs.microsoft.com/cppblog/new-safety-rules-in-c-core-check/NEW

VS 16.7

https://docs.microsoft.com/en-us/cpp/code-quality/quick-start-code-analysis-for-c-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/quick-start-code-analysis-for-c-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019
https://devblogs.microsoft.com/cppblog/new-safety-rules-in-c-core-check/
https://devblogs.microsoft.com/cppblog/new-safety-rules-in-c-core-check/


162020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck
...

https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019


172020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



182020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

clang-tidy

clang.llvm.org/extra/clang-tidy/checks/list.html

~ 300 checks

https://clang.llvm.org/extra/clang-tidy/checks/list.html
https://clang.llvm.org/extra/clang-tidy/checks/list.html


19

clang-tidy

modernize-use-nullptr

modernize-loop-convert

modernize-use-override

readability-redundant-string-cstr

modernize-use-emplace

modernize-use-auto

modernize-make-shared & modernize-make-unique

modernize-use-equals-default & modernize-use-equals-delete

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



20

clang-tidy

modernize-use-default-member-init

readability-redundant-member-init

modernize-pass-by-value

modernize-return-braced-init-list

modernize-use-using

cppcoreguidelines-pro-type-member-init

readability-redundant-string-init & misc-string-constructor

misc-suspicious-string-compare & misc-string-compare

misc-inefficient-algorithm

cppcoreguidelines-*

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



21

string checks

 abseil-string-find-startswith
 boost-use-to-string
 bugprone-string-constructor
 bugprone-string-integer-assignment
 bugprone-string-literal-with-embedded-nul
 bugprone-suspicious-string-compare
 modernize-raw-string-literal
 performance-faster-string-find
 performance-inefficient-string-concatenation
 readability-redundant-string-cstr
 readability-redundant-string-init
 readability-string-compare

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

clang-tidy



22

clang-tidy
checks

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



23

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html

clang-tidy bugprone-dangling-handle

〝 Detect dangling references in value handles like std::string_view


These dangling references can be a result of constructing handles from  
temporary values, where the temporary is destroyed soon after the handle 
is created.

Options: 

HandleClasses
A semicolon-separated list of class names that should be treated as handles.  
By default only std::string_view is considered.

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

👉

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html
https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html


24

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

This is important because it turns out to be easy to convert [by design]


a std::string to a std::string_view, 


or a std::vector/array to a std::span,


so that dangling is almost the default behavior.

CppCoreGuidelines

Lifetime safety: Preventing common dangling 

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf


25

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

CppCoreGuidelines

void example() 
{
  std::string_view sv = std::string("dangling"); // A
  std::cout << sv;
}

clang -Wlifetime Experimental

Lifetime safety: Preventing common dangling 

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf


25

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

CppCoreGuidelines

void example() 
{
  std::string_view sv = std::string("dangling"); // A
  std::cout << sv;
}

clang -Wlifetime

// ERROR (lifetime.3): ‘sv’ was invalidated when
// temporary was destroyed (line A)

Experimental

Lifetime safety: Preventing common dangling 

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf


26

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

void example() 
{
  std::string_view sv = std::string("dangling");

  std::cout << sv;
}

Lifetime safety: Preventing common dangling 

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

warning: initializing pointer member to point to a temporary object whose 
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl
https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl


26

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

void example() 
{
  std::string_view sv = std::string("dangling");

  std::cout << sv;
}

// warning: object backing the pointer will be destroyed
// at the end of the full-expression [-Wdangling-gsl]

Lifetime safety: Preventing common dangling 

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

warning: initializing pointer member to point to a temporary object whose 
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl
https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl


27

Lifetime profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

https://www.youtube.com/watch?v=d67kfSnhbpA

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://www.youtube.com/watch?v=d67kfSnhbpA
https://www.youtube.com/watch?v=d67kfSnhbpA


282020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Checks are organized in modules, which can be linked into clang-tidy 

with minimal or no code changes in clang-tidy

clang-tidy



282020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Checks are organized in modules, which can be linked into clang-tidy 

with minimal or no code changes in clang-tidy

Checks can plug into the analysis on the preprocessor level using PPCallbacks 

or on the AST level using AST Matchers

clang-tidy



282020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Checks are organized in modules, which can be linked into clang-tidy 

with minimal or no code changes in clang-tidy

Checks can plug into the analysis on the preprocessor level using PPCallbacks 

or on the AST level using AST Matchers

Checks can report issues in a similar way to how Clang diagnostics work. 

A fix-it hint can be attached to a diagnostic message

clang-tidy



29

Custom clang-tidy checks

⬅ your custom 
clang-tidy build

⬅ your custom checks

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



302020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Write custom checks for your needs  
(project specific)

Run them regularly !



31

Explore Further

https://steveire.wordpress.com/2019/01/02/refactor-with-clang-tooling-at-codedive-2018/

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://steveire.wordpress.com/2019/01/02/refactor-with-clang-tooling-at-codedive-2018/
https://steveire.wordpress.com/2019/01/02/refactor-with-clang-tooling-at-codedive-2018/


32

Explore Further

https://www.youtube.com/watch?v=JPnN2c2odNY

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://www.youtube.com/watch?v=JPnN2c2odNY
https://www.youtube.com/watch?v=JPnN2c2odNY


332020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

www.youtube.com/watch?v=Iz4C29yul2U

https://www.youtube.com/watch?v=Iz4C29yul2U
https://www.youtube.com/watch?v=Iz4C29yul2U


342020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.2

Clang/LLVM support  
for MSBuild & CMake Projects

Ships with Clang (as optional component) 

clang-cl.exe

https://devblogs.microsoft.com/cppblog/clang-llvm-support-for-msbuild-projects/📖

https://devblogs.microsoft.com/cppblog/clang-llvm-support-for-msbuild-projects/
https://devblogs.microsoft.com/cppblog/clang-llvm-support-for-msbuild-projects/


352020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.2



362020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.7

👈



372020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.2

clang-cl.exe



382020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

clang-tidy

code analysis

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/📖

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/
https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/


392020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

👉



402020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/📖

clang-tidy warnings 

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/
https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/


412020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

clang-tidy warnings also display as in-editor squiggles 

Code Analysis runs automatically in the background



422020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

NOT on  
Visual Studio 2019 v16.4+ 

yet ?

No problem



43

= ->

LLVM
clang-tidy
clang++

clang-format
clang-check/query

Visual Studio
2015 / 2017 / 2019www.clangpowertools.com

Clang Power Tools

2020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

http://www.clangpowertools.com
http://www.clangpowertools.com


442020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Static vs Dynamic 
Analysis



452020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

offline (out of the normal compilation cycle) => can take longer to process source code


is intimately linked to the used programming language


can detect a lot of semantic issues


can yield a lot of false positive results (sometimes you go on a wild goose chase)


very poor at whole program analysis (follow connections in different TUs)


almost helpless around virtual functions (difficult to de-virtualize calls)


weak analysis ability around global pointers


pointer aliasing makes it hard to prove things (alias analysis is hard problem)


vicious cycle: type propagation <> alias analysis 

Static Analysis



462020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode


runtime overhead (performance impact: depending on tool, from 2x up to 10x)


extra-memory usage (for memory related tools/instrumentation), 2x or more


sometimes difficult to map error reports into source code for Release/optimized builds 

(symbols info, line numbers, inlined functions)


some tools require to recompile the whole program in instrumented mode


must integrate runtime analysis with Test Units 


must ensure good code coverage for the runtime analysis (all possible scenarios)


the biggest impact when combined with fuzzing



462020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

0 false positives!

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode


runtime overhead (performance impact: depending on tool, from 2x up to 10x)


extra-memory usage (for memory related tools/instrumentation), 2x or more


sometimes difficult to map error reports into source code for Release/optimized builds 

(symbols info, line numbers, inlined functions)


some tools require to recompile the whole program in instrumented mode


must integrate runtime analysis with Test Units 


must ensure good code coverage for the runtime analysis (all possible scenarios)


the biggest impact when combined with fuzzing



472020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Part II 

Dynamic Analysis



482020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Control Flow GuardICYMI

https://aka.ms/cpp/cfg-llvm

/guard:cf

Enforce control flow integrity (Windows 8.1 & Windows 10)

MSVC

CFG is now supported in LLVM 10

CFG is complementary to other exploit mitigations, such as: 


Address Space Layout Randomization (ASLR) 


Data Execution Prevention (DEP)

C++ & Rust

https://aka.ms/cpp/cfg-llvm
https://aka.ms/cpp/cfg-llvm


492020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Sanitizers



502020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Sanitizers

AddressSanitizer - detects addressability issues


LeakSanitizer - detects memory leaks


ThreadSanitizer - detects data races and deadlocks


MemorySanitizer - detects use of uninitialized memory


HWASAN - hardware-assisted AddressSanitizer (consumes less memory)


UBSan - detects Undefined Behavior
github.com/google/sanitizers

https://github.com/google/sanitizers
https://github.com/google/sanitizers


512020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

meetingcpp.com/mcpp/survey/?q=19

https://meetingcpp.com/mcpp/survey/?q=19
https://meetingcpp.com/mcpp/survey/?q=19


522020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Common Vulnerabilities and Exposures

youtube.com/watch?v=0EsqxGgYOQU

Memory safety continues to dominate

https://www.youtube.com/watch?v=0EsqxGgYOQU
https://www.youtube.com/watch?v=0EsqxGgYOQU


532020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

github.com/google/sanitizers/wiki/AddressSanitizer

De facto standard for detecting memory safety issues 

It’s important for basic correctness and sometimes true vulnerabilities

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer


542020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

Detects:


Use after free (dangling pointer dereference)


Heap buffer overflow 

Stack buffer overflow 

Global buffer overflow 

Use after return 

Use after scope 

Initialization order bugs 

Memory leaks
github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer


552020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

Started in LLVM by a team @ Google 


and quickly took off as a de facto industry standard 


for runtime program analysis

github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer


562020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

LLVM starting with version 3.1 (2012)

 

GCC starting with version 4.8 (2013)


MSVC starting with VS 16.4 (late 2019)

http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com
http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com


572020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer 
(ASan)

Visual Studio 2019 
v16.4

devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/📖

🎉

October 2019

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/


582020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://www.youtube.com/watch?v=0EsqxGgYOQU

sneak 
peek

https://www.youtube.com/watch?v=0EsqxGgYOQU
https://www.youtube.com/watch?v=0EsqxGgYOQU


592020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

👈



602020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

👈

👈



612020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.4

👈
Just x86/Release :(

Tech Preview

October 2019



622020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.7

👈

x64 & Debug buildsNEW

August 2020



632020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.7

x64 & Debug builds

NEW

August 2020

docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.7.0

support all Debug runtimes: /MTd /MDd 

+

https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.7.0
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.7.0


642020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019 
v16.8 Preview 3

NEW

devblogs.microsoft.com/cppblog/a-multitude-of-updates-in-visual-studio-2019-version-16-8-preview-3/

September 14

https://devblogs.microsoft.com/cppblog/a-multitude-of-updates-in-visual-studio-2019-version-16-8-preview-3/
https://devblogs.microsoft.com/cppblog/a-multitude-of-updates-in-visual-studio-2019-version-16-8-preview-3/


652020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Very soon out of Experimental

Visual Studio ASan 
Experimental

Help needed: Report bugs!



662020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio ASan 
Experimental

Very tall order to bring ASAN to Windows

😅



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

the surface area of the Microsoft platform is enormous



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

the surface area of the Microsoft platform is enormous

non-standard C++ 



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

the surface area of the Microsoft platform is enormous

non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

the surface area of the Microsoft platform is enormous

non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

AV traps  0xc0000005

the surface area of the Microsoft platform is enormous

non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps  0xc0000005

the surface area of the Microsoft platform is enormous

non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps  0xc0000005

the surface area of the Microsoft platform is enormous

COM
non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps  0xc0000005

the surface area of the Microsoft platform is enormous

Managed C++

COM
non-standard C++ {



672020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Challenges bringing  
ASan to Windows

Structured Exception Handling (SEH)   /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps  0xc0000005

ASan runtime interop with managed code (.NET)

the surface area of the Microsoft platform is enormous

Managed C++

COM
non-standard C++ {



682020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio ASan 
Experimental

"Thank you" to Microsoft team* 

tirelessly working on this

🙏
* Some of them are available in Remo to answer your questions

❓

#sig_visual_studio on CppCon Slack

https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3
https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3


692020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

2020: The Year of Sanitizers



702020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Everyone will continue to invest heavily in this area (sanitizers)  

just because it’s so effective at just finding correctness issues

Microsoft has contributed back to LLVM 

all the work they've done to make ASan runtime work on Windows

github.com/llvm/llvm-project/tree/master/compiler-rt

https://github.com/llvm/llvm-project/tree/master/compiler-rt
https://github.com/llvm/llvm-project/tree/master/compiler-rt


712020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Visual Studio 2019

aka.ms/asan

ASan Visual Studio integration:


MSBuild & CMake support for both Windows & Linux


Debugger integration for MSVC and Clang/LLVM

https://aka.ms/asan
https://aka.ms/asan


722020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)



732020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

IDE Exception Helper will be displayed when an issue is encountered  
=> program execution will stop 

ASan logging information => Output window



742020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

==27748==ERROR: AddressSanitizer: stack-use-after-scope on address 0x0055fc68 at pc 0x793d62de bp 0x0055fbf4 sp 0x0055fbe8
WRITE of size 80 at 0x0055fc68 thread T0
    #0 0x793d62f6 in __asan_wrap_memset d:\_work\5\s\llvm\projects\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764
    #1 0x77dd46e7  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c46e7)
    #2 0x77dd4ce1  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c4ce1)
    #3 0x75d408fe  (C:\WINDOWS\System32\KERNELBASE.dll+0x100f08fe)
    #4 0xa5ada0 in try_get_first_available_module minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:271
    #5 0xa5ae99 in try_get_function minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:326
    #6 0xa5b028 in __acrt_AppPolicyGetProcessTerminationMethodInternal minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:737
    #7 0xa606ad in __acrt_get_process_end_policy minkernel\crts\ucrt\src\appcrt\internal\win_policies.cpp:84
    #8 0xa52dcb in exit_or_terminate_process minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:134
    #9 0xa52da7 in common_exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:280
    #10 0xa52fb6 in exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:293
    #11 0xa2deb3 in _scrt_common_main_seh d:\agent\_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:295
    #12 0x75ef6358  (C:\WINDOWS\System32\KERNEL32.DLL+0x6b816358)
    #13 0x77df7a93  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e7a93)

Address 0x0055fc68 is located in stack of thread T0
SUMMARY: AddressSanitizer: stack-use-after-scope d:\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764 in __asan_wrap_memset
Shadow bytes around the buggy address:
  0x300abf30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x300abf70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x300abf80: 00 00 00 00 00 00 00 00 00 00 00 00 00[f8]00 00
  0x300abf90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x300abfd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
  Shadow gap:              cc
==27748==ABORTING

Clang/LLVM



752020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Snapshot File
Game changer! 

Minidump file (*.dmp) <= Windows snapshot process (program virtual memory/heap + metadata)


VS can parse & open this => Points at the location the error occurred. 


Changes the way you report a bug, in general

➡

+ Live Share



762020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Snapshot 
Loaded



772020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

How does it work ?



782020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

ASan is just Malware,  
used for Good 



782020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

ASan is just Malware,  
used for Good 



792020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Compiler 


    instrumentation code, stack layout, and calls into runtime

    meta-data in OBJ for the runtime


Sanitizer Runtime 

   hooking  malloc(), free(), memset(), etc.

   error analysis and reporting

   does not require complete recompile => great for interop

   zero false positives

Address Sanitizer (ASan)



802020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

==23364==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x12ac01b801d0 at 
pc 0x7ff6e3a627be bp 0x0097d4b4fac0 sp 0x0097d4b4fac8
WRITE of size 4 at 0x12ac01b801d0 thread T0 
#0 0x7ff6e3a627bd in main C:\Asana\Asana.cpp:10
#1 0x7ff6e3a66ce8 in invoke_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#2 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#3 0x7ff6e3a66a8d in __scrt_common_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#4 0x7ff6e3a66d78 in mainCRTStartup D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#5 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#6 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

0x12ac01b801d0 is located 0 bytes to the right of 400-byte region [0x12ac01b80040,0x12ac01b801d0)
allocated by thread T0 here: 
#0 0x7ffe83be7e91 in _asan_loadN_noabort+0x55555 (...\bin\HostX64\x64\clang_rt.asan_dbg_dynamic-x86_64.dll+0x180057e91)
#1 0x7ff6e3a62758 in main C:\Asana\Asana.cpp:9
#2 0x7ff6e3a66ce8 in invoke_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#3 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#4 0x7ff6e3a66a8d in __scrt_common_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#5 0x7ff6e3a66d78 in mainCRTStartup D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#6 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#7 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

ASan Report



812020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

SUMMARY: AddressSanitizer: heap-buffer-overflow C:\Asana\Asana.cpp:10 in main()

Shadow bytes around the buggy address:
  0x04d981eeffe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981eefff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981ef0000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
  0x04d981ef0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981ef0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x04d981ef0030: 00 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa
  0x04d981ef0040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa



  Addressable:             00
  Partially addressable:   01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
  Shadow gap:              cc

822020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Shadow byte legend  

(one shadow byte represents 8 application bytes)

(of the 8 application bytes, how many are accessible)

issues & markers

👍



832020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Shadow Mapping

Process Memory Shadow Memory

👈Red zones

my allocated memory

➡ 🧪☣
Poisoned memory



842020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz)

*p = 0xbadf00d

Code Generation 
(simplified)

*p = 0xbadf00d ➡

If the shadow byte is poisoned, 


ASAN runtime reports the problem and crashes the application



852020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Code Generation 
(simplified)

 *(                                   ) = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

ASAN maintains a lookup table where every 8 bytes of user memory are tracked by 1 shadow byte


=> 1/8 of the address space (shadow region)

Lookups into shadow memory need to be very fast



862020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

bool ShadowByte::IsBad(Addr) // is poisoned ?
{  
  Shadow = Addr >> 3 + Offset;  
  return (*Shadow) != 0;
} 
 

Code Generation 
(simplified)

 *(                                   ) = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

Lookups into shadow memory need to be very fast

Location of shadow region in memory



Process Memory Shadow Memory

872020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Shadow Mapping

if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz);

*p = 0xf00d

p ShadowByte(p)



Process Memory Shadow Memory

882020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Shadow Mapping

if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz);

*p = 0xbadf00d

p ShadowByte(p)



892020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

malloc()

ASAN malloc()



902020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

Shadow Memory

Poisoned memory



912020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Heap Red Zones

alloc 1 alloc 2 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 4 alloc 5

Shadow Memory

Poisoned memory

When an object is deallocated, 

its corresponding shadow byte is poisoned

(delays reuse of freed memory)

Detect:  
heap underflows/overflows 
use-after-free & double free 



922020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Stack Red Zones

my_buffer

my_integer

void Func()
{
  std::byte my_buffer[12];
  int my_integer = 5;
  ...
  ...
  ...
  ...
  my_buffer[12] = 0;
}

Stack



932020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Stack Red Zones

my_buffer

my_integer

void Func()
{
  std::byte my_buffer[12];
  int my_integer = 5;
  ...
  
  if (AsanRt::IsPoisoned(&my_buffer[12])) 
    AsanRt::Report(my_buffer);
  my_buffer[12] = 0;
}

at runtime, the stack is poisoned when entering the function

Stack

stack red zones are un-poisoned when exiting the function

0xf1
0xf1

0xf3

0xf2

left 

red zone

mid 

red zone

right 

red zone



libc++ 
libstdc++

942020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

AddressSanitizer ContainerOverflow

with the help of code annotations in std::vector

std::vector<T>

begin() end()

capacity()

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow
https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow


952020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

AddressSanitizer ContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

std::vector<T>

begin() end()

capacity()

container-overflow

poisoned memory

std::vector<int> v;
v.push_back(0);
v.push_back(1);
v.push_back(2);
assert(v.capacity() >= 4);
assert(v.size() == 3);

T * p = &v[0];
std::cout << p[3];

v[3] could be detected by 
simple checks in std::vector

0xfc

0xfc

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow
https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow


962020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Address Sanitizer (ASan)

Very fast instrumentation 

The average slowdown of the instrumented program is ~2x

github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers
https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers


972020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Problems & Gotchas

VS 16.7.x-16.8.Preview

Stuff you need to know



982020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Compiling/linking from command-line

 Compiling a single static EXE  
 link the static runtime asan-i386.lib and the cxx library


 Compiling an EXE with /MT runtime which will use ASan-instrumented DLLs  
 the EXE needs to have asan-i386.lib linked and  
 the DLLs need the clang_rt.asan_dll_thunk-i386.lib 


 When compiling with the /MD dynamic runtime  
 all EXE and DLLs with instrumentation should be linked with  
 asan_dynamic-i386.lib and clang_rt.asan_dynamic_runtime_thunk-i386.lib  
 At runtime, these libraries will refer to the  
 clang_rt.asan_dynamic-i386.dll shared ASan runtime.

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

Manual CLI compile/link can be tedious, 

be careful in choosing the correct ASan libraries to link against

Check here for all the details:

Eg.

https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/
https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/


992020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

error MSB8059: 

-fsanitize=address (Enable Address Sanitizer) is incompatible with option 
'edit-and-continue' debug information /ZI

/ZI 
Edit and Continue (Debug)



1002020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Problem: 

A non-ASan built executable can NOT call LoadLibrary() on a DLL built with ASAN. 


Reason: 

ASan runtime is tracking memory and the non-ASan executable might have done something like 
HeapAlloc() 

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

Mixing ASan & non-ASan modules

This limitation is a problem if you're building a plugin (DLL)

MSVC team is considering dealing with this issue in a later release

https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/
https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/


1012020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

twitter.com/ciura_victor/status/1296499633825492992

warning C5059: 

runtime checks and address sanitizer is not currently supported - disabling runtime checks

If you use  /WX  this harmless/informative warning becomes a build blocker :( 
 

=> we had to disable /RTCs and /RTC1 so we could do the ASan experiments

/RTCs and /RTC1 Runtime Checks

https://twitter.com/ciura_victor/status/1296499633825492992
https://twitter.com/ciura_victor/status/1296499633825492992


1022020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

It appears some ASan runtime PDBs were not included in the VS installer:  

[Debug]   
vcasand.lib(vcasan.obj) : warning LNK4099: PDB 'vcasand.pdb' was not found with 'vcasand.lib(vcasan.obj)'  
linking object as if no debug info

[Release] 
vcasan.lib(vcasan.obj) : warning LNK4099: PDB 'vcasan.pdb' was not found with 'vcasan.lib(vcasan.obj)'  
linking object as if no debug info

Building an EXE

Missing PDBs from VS



1032020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

It appears some PDBs were not included in the VS installer:  

[Debug]   
libvcasand.lib(vcasan.obj) : warning LNK4099: PDB 'libvcasand.pdb' was not found with 
'libvcasand.lib(vcasan.obj)

[Release] 
libvcasan.lib(vcasan.obj) : warning LNK4099: PDB 'libvcasan.pdb' was not found with 
'libvcasan.lib(vcasan.obj)' 

Building a static LIB, linked into an EXE

Missing PDBs from VS



1042020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

[Debug | x64]
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _calloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _expand_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _free_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _malloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _realloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: _recalloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(expand.obj)     : warning LNK4006: _expand already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

[Debug | x86]
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __calloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __expand_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __free_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __malloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __realloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(debug_heap.obj) : warning LNK4006: __recalloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored
>libucrtd.lib(expand.obj)     : warning LNK4006: __expand already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

Linker Trouble?

Building a static LIB, linked into an EXE



1052020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

developercommunity.visualstudio.com/content/problem/1144525/mfc-application-fails-to-link-with-address-sanitiz.html

ASan+
>uafxcw.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new(unsigned int)" (??2@YAPAXI@Z) already 
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void __cdecl operator delete(void *)" (??3@YAXPAX@Z) already 
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new[](unsigned int)" (??_U@YAPAXI@Z) 
already defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void __cdecl operator delete[](void *)" (??_V@YAXPAX@Z) already 
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

⚠  if you link statically to MFC lib

https://developercommunity.visualstudio.com/content/problem/1144525/mfc-application-fails-to-link-with-address-sanitiz.html
https://developercommunity.visualstudio.com/content/problem/1144525/mfc-application-fails-to-link-with-address-sanitiz.html


1062020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

ASan+

Workarounds: 

set /FORCE:MULTIPLE in the linker command line (settings)


temporarily set your MFC application to link to shared MFC DLLs for testing with ASan

void* operator new(size_t size); 

In general, if you have overrides for:



1072020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Can ASan also detect memory leaks ?

Some 

Eg.


    If you don’t use a virtual destructor you might see an error message that says something like: 

    “new and delete mismatch. You allocated 16 bytes but freed 8”.

FAQ



1082020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Explore Further

devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

AddressSanitizer (ASan) for Windows with MSVC

AddressSanitizer for Windows: x64 and Debug Build Support

📖

by Augustin Popa 
@augustin_popa

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/
https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/
https://twitter.com/augustin_popa
https://twitter.com/augustin_popa


1092020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Part III 

Warm Fuzzy Feelings



1102020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Sanitizers + Fuzzing 
💪

Automatically generate inputs to you program to crash it.



1112020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Compile + Asan RT Fuzzing 

Workflow



1122020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?



1132020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

{ ASan + Fuzzing } => Azure



1142020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

{ ASan + Fuzzing } => Azure

www.youtube.com/watch?v=0EsqxGgYOQU

https://www.youtube.com/watch?v=0EsqxGgYOQU
https://www.youtube.com/watch?v=0EsqxGgYOQU


1152020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

{ ASan + Fuzzing } => Azure

Azure MSRD service



1162020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://sched.co/e7C0

https://sched.co/e7C0
https://sched.co/e7C0


1172020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

https://sched.co/e7C0

Microsoft's "OneFuzz" 

a platform you will be able to download from Github  
and run fuzzing in Azure

https://sched.co/e7C0
https://sched.co/e7C0


1182020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

Looking forward to many 
days of bug-fixing ahead 😬

🔥🔥🔥



1192020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

I hope you're now as excited 

as I am for leveraging the power


of ASan on Windows



1202020  Victor Ciura  |  @ciura_victor  -  2020: The Year of Sanitizers?

❓
Q & A Myself as well as people on Visual C++ team 


are available in Remo to answer your questions

#sig_visual_studio on CppCon Slack

https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3
https://app.slack.com/client/T09P7Q5GB/C01ALG7EFC3


2020: The Year of Sanitizers?

Victor Ciura 
Principal Engineer 

@ciura_victor

https://twitter.com/ciura_victor
https://twitter.com/ciura_victor

