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Abstract

    I hate the term “Design Patterns”. It implies there are universally applicable solutions to some common code 
scenarios. Just codifying existing practice into some rules and blindly following them is a comfortable path, but 
not the optimal one. It turns out it’s not as easy as following recipes. Each situation and best associated 
solution is unique. 


    However there is value in having uniform code structure throughout a project. So this topic is not to be 
discarded just yet, rather it needs more careful examination. 


    In terms of inspectable properties of objects, what have we learned from years of OO influence from other 
languages and frameworks? How can we leverage these borrowed techniques in a value-oriented context? 
Does C++ benefit from special considerations? 


    I think it’s time to revisit our old friend, the Observer pattern - from “theory” to practice. I’m not going to offer 
The Solution, rather we’re going to examine tradeoffs for several possible implementations, in various usage 
scenarios from a real project. 
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About me

Advanced Installer Clang Power Tools

@ciura_victor

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor
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Online presentation

Q & A
Use the Q&A tab in Zoom
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Spooky What ?

Spooky Action at a Distance
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Spooky What ?

Entangled particles 

 

Quantum entanglement or "spooky action at a distance" 

as Albert Einstein famously called it, is the idea that the 

fates of tiny particles are linked to each other even if 

they're separated by long distances. 
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Alternative Title

Revisiting Observers
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Alternative Title

Subscribe(Observer)



2021  Victor Ciura  |  @ciura_victor  - Spooky Action at a Distance 9

Design Patterns

I hate the term “Design Patterns”
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Design Patterns

It implies there are universally applicable solutions to some common code scenarios. 


Just codifying existing practice into some rules and blindly following them is a 

comfortable path, but not the optimal one. 


It turns out it’s not as easy as following recipes. 


Each situation and best associated solution is unique. 
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Design Patterns

However there is value in having uniform code structure throughout a project. 


So this topic is not to be discarded just yet, rather it needs more careful examination. 
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GoF Book

A classic


Too formal & dry
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Game Programming Patterns

Bob Nystrom

amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906/

gameprogrammingpatterns.com

https://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906/
http://gameprogrammingpatterns.com/
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Related Session - CppCon 2021

Klaus Iglberger - Design Patterns: Facts and Misconceptions


Design Patterns have proven to be useful over several decades and knowledge about 
them is still very important to design robust, decoupled systems. However, in recent 
decades a lot of misconceptions have piled up, many based on misunderstandings 
about software design in general and Design Patterns in particular.


This purpose of this talk is to help to separate facts from misconceptions. It explains 
what software design is, how Design Patterns fit in, and what an idiom is.


https://sched.co/nv3J
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Related Session - CppCon 2021

Klaus Iglberger - Design Patterns: Facts and Misconceptions


Addresses the following misconceptions about Design Patterns: 


- Design Patterns are outdated and have become irrelevant


- The GoF Design Patterns are nothing but idioms


- The GoF Design Patterns are limited to object-oriented programming


- std::make_unique is a Design Pattern and helps to adhere to SRP


https://sched.co/nv3J
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Observer Pattern

In terms of inspectable properties of objects:


What have we learned from years of OO influence from other languages and 
frameworks? 


How can we leverage these borrowed techniques in a value-oriented context? 


Does C++ benefit from special considerations? 
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Observer Pattern

Let's revisit our old friend, the Observer pattern - from theory to practice. 


I’m not going to offer The Solution™


We’re going to examine tradeoffs for several possible implementations, in various usage 

scenarios from a real project. 
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Observer Pattern

Observers are everywhere...


Think: 


MVC


MVVM


Qt signal-slot mechanism


not just GUI ↔ model, also model ↔ model 
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Observer Pattern

It's a show with Actors and Actions


Subject/Actor doesn’t know what (type) the Observers are. 


It just knows that they exist and how to notify them when certain actions occur. 

Low Coupling
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Subscription Model

Tune-in to a particular radio station

📡
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Remote Objects

Inspectable properties and remote objects 
"spooky action at a distance"

class Widget

{

  Data mData;


public:


  void Set(const Data & d) {

    if (d != mData) {

      mData = d;

      NotifyObservers();

    }

  }

};
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Subscription Order

Observers added in a certain order.


Do they respond in the same order?

class Widget

{

  ... Salient Data


  std::vector<IObserver *> mObservers;

};



2021  Victor Ciura  |  @ciura_victor  - Spooky Action at a Distance 23

Subscribing

void Widget::AddObserver(IObserver & aObserver)

{

  // too simple, right?

  mObservers.push_back(&aObserver);

}
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Over-subscribing

Adding an observer more than once?


void Widget::AddObserver(IObserver & aObserver)

{

  auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);


  if (found == mObservers.end())

    mObservers.push_back(&aObserver);

}

Do you want to allow an observer to subscribe more than once?


Do you expect the observer to be called twice for the same event?
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Over-subscribing

What about local reasoning?


void Func()

{

  obj->AddObserver(*this);


  ... // do something important


  obj->RemoveObserver(*this); // what if this obs was already added before?

}
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Over-subscribing

What about local reasoning?


void Func()

{

  RegisterObserver obs(*this, actor); // RAII remember if we added


  ... // do something important


  // ~RegisterObserver() removes *this from observers if we added in C-tor

}
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Over-subscribing

Signal the caller if the registration was "successful"


bool Widget::AddObserver(IObserver & aObserver)

{

  auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);

  if (found != mObservers.end())

    return false; // observer was already registered


  mObservers.push_back(&aObserver);

  return true;

}
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Over-subscribing

Adding an observer more than once?


void Widget::AddObserver(IObserver & aObserver)

{

  mObservers.push_back(&aObserver);

}

We expect the observer to be called twice for the same event.


Local reasoning - restricted lifetime. 🤔
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Unsubscribe

Removing an observer not in the list (already removed?)

void Widget::RemoveObserver(IObserver & aObserver)

{

  auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);


  if (found != mObservers.end())

    mObservers.erase(found);

}


For multiple registration scenario, what if we remove the wrong instance?


(sensitive to order of notification)
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Unsubscribe

Removing all instances of this observer (multiple registration)

void Widget::RemoveObserver(IObserver & aObserver)

{

  mObservers.erase(

    std::remove(mObservers.begin(), mObservers.end(), &aObserver),    

    mObservers.end() );

}
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Unsubscribe

Removing all instances of this observer (multiple registration)

void Widget::RemoveObserver(IObserver & aObserver)

{

  std::erase(mObservers, &aObserver); // C++20 safer than erase-remove idiom 

}
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Priority

Who should be notified first?


void Widget::AddObserver(IObserver & aObserver)

{

  auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);


  if (found == mObservers.end())

    mObservers.insert(mObservers.begin(), &aObserver);

}
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Priority

Do we need priority buckets?


class Widget

{

  ... mSalientData;


  std::vector<IObserver *> mObserversRing0;

  std::vector<IObserver *> mObserversRing1;

  std::vector<IObserver *> mObserversRing2;

  ...

};

🏇🏇🏇
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Priority

Do we need priority buckets?


void Widget::AddObserver(IObserver & aObserver, Priority p)

{

  ...


  // what happens if an observer is registered (by mistake) 

  // with different priorities?


}
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Broadcast

Notify all registered observers, in order:

void Widget::NotifyObservers()

{

  for (auto & observer : mObservers)

    observer->WidgetChanged(this);

} 📢
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Tune-in

Tune-in and react to the event triggered by the actor:

void SomeObserver::WidgetChanged(Actor * sender)

{

  // react in some way to the changed object (actor)

  

  ...  

}

📡
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Unsubscribe

Safe to deregister at any time?


What if an observer wants to remove itself after receiving a notification?

void SomeObserver::WidgetChanged(Actor * sender)

{

  ...  // react in some way to the changed object (actor)


  sender->RemoveObserver(*this); // WHAT?! don't care about future events

}

📡
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Unsubscribe

Safe to deregister at any time?


What if an observer wants to remove itself after receiving a notification?

void SomeObserver::WidgetChanged(Actor * sender)

{

  ...  // react in some way to the changed object (actor)


  sender->RemoveObserver(*this); // WHAT?! don't care about future events

}

📡

for (auto & observer : mObservers)

  observer->WidgetChanged(this);

std::erase(mObservers, &aObserver); 🔥

↪
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Unsubscribe

How can we make recursive remove more resilient?

bool Widget::RemoveObserver(IObserver & aObserver)

{

  for(auto it = mObservers.begin(); it != mObservers.end(); ++it)

  {

    if (*it == &aObserver)

    {

      *it = nullptr; // replace observer with a sentinel

      return true;

    }

  }

 

  return false;

}
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Broadcast

Notify all registered observers:

void Widget::NotifyObservers()

{

  for (auto & observer : mObservers)

  {

    if (observer)

     observer->WidgetChanged(this);

  }


  std::erase(mObservers, nullptr); // deferred cleanup of removed observers

}

📢
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Register

Recursive add observer has the same problem, but it's more rare in practice.
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Small Objects

Can small objects afford to have observers?

class SmallObject

{

  ... mSalientData;


  std::vector<IObserver *> mObservers;

};
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Small Objects

Can small objects afford to have observers?

class SmallObject

{

  ... mSalientData;


  std::vector<IObserver *> mObservers;

};

What if some instances will never have a registered observer?

An empty std::vector is not tiny.
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Small Objects

class SmallObject

{

  ... mSalientData;


  LazyVector<IObserver *> mObservers;

};

We can use an indirection to "fault-in" the std::vector creation when first needed: 

  operator*()

  operator->() {


  if (mPtr == nullptr)

    mPtr = new std::vector<Type>();

  return mPtr;

}

Small objects can be register observers lazily
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Lots of Objects

What if we have lots of these small objects?

We need to use some additional aside structure to keep a record of all observers for 
each object.

class GlobalBottleneck

{

  // (Un)RegisterOrbserverFor(const Actor *, IObserver *);


  std::unordered_map<const Actor*, std::vector<IObserver *>> mObservers;

};



2021  Victor Ciura  |  @ciura_victor  - Spooky Action at a Distance 45

Threads

Multi-lane highway to... crashes🔥
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Threads

Put a mutex bottleneck on it !


Guard each function with a mutex: 

- Widget::Set()

- Widget::AddObserver()

- Widget::RemoveObserver()

- Widget::NotifyObservers()

Recursive add/remove observers, bites again!


recursive_mutex ? 😄
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Threads

class Widget

{

  Data mData;

  std::recursive_mutex mMtx;


public:


  void Set(const Data & d) 

  {

    std::lock_guard<recursive_mutex> lock(mMtx);

    

    if (d != mData) {

      mData = d;

      NotifyObservers();

    }

  }

};
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Threads

Not bulletproof! 


You can get in a dead-lock situation.


recursive_mutex 😔

🔁
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Our Values

What about Squaring the Circle ?
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Our Values

What about Squaring the Circle ?


Value-oriented design in an Object-oriented system
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Our Values

youtube.com/watch?v=SAMR5GJ_GqA

https://www.youtube.com/watch?v=SAMR5GJ_GqA


2021  Victor Ciura  |  @ciura_victor  - Spooky Action at a Distance 51

Threads

When in doubt, always make copies.
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Threads
void Widget::NotifyObservers()

{

  std::vector<IObserver *> cpy;

  {

    std::lock_guard<mutex> lock(mMtx);

    cpy = mObservers;

  }


  size_t count = cpy.size();

  for (size_t i = 0; i < count; ++i) // avoid the issues with iter invalidation

  {

    if (mObservers[i])

     cpy[i]->WidgetChanged(this);

  }


  {

    std::lock_guard<mutex> lock(mMtx);

    std::erase(mObservers, nullptr); // deferred cleanup of removed observers

  }

}

🤕
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Threads

We probably need something like:  

  QObject::deleteLater()


In general, even if you're not using Qt, 


I think it's very instructive to learn how UI observers are designed to work in Qt.
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C++ Now 2016

www.youtube.com/watch?v=RVvVQpIy6zc

https://www.youtube.com/watch?v=RVvVQpIy6zc
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Threads

Basically, in a multi-threaded context, it's almost impossible to implement 

a solid Observer pattern

In real code you can't see the 

deadlocks... until they happen.

Rule of thumb


Don't hold a lock 


while calling unknown code.



2021  Victor Ciura  |  @ciura_victor  - Spooky Action at a Distance 56

Intrusive

Anyway, we don't all this mess inside our type:  


- Widget::AddObserver()


- Widget::RemoveObserver()


- Widget::NotifyObservers(.)

...

And we want a generic/reusable template as a base.

NotifyEventA()

NotifyEventB()

NotifyEventC()

NotifyEventD()

NotifyEventE()

...

↪

class Widget : public Actor<Widget>

{
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Remote Objects

Inspectable properties and remote objects 

🔭
"spooky action at a distance"

class Widget : public Actor<Widget>

{

  Data mData;


public:


  void Set(const Data & d) {

    if (d != mData) {

      mData = d;

      NotifyObservers();

    }

  }

};
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Remote Observer

class RemoteObserver : public IObserver

{

  RemoteObserver() {

    mWidget->AddObserver(*this);

  }


  ~RemoteObserver(){

    mWidget->RemoveObserver(*this);

  }


  void WidgetChanged(Actor * sender) override

  {

    // react in some way to the changed object (actor)

    sender->Query???();

  }

  ...

  Actor * mWidget;

};

📡

EventA()

EventB()

EventC()

EventD()

EventE()

...
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Dangling

class RemoteObserver : public IObserver

{

  RemoteObserver() {

    mWidget->AddObserver(*this);

  }


  ~RemoteObserver(){

    mWidget->RemoveObserver(*this);

  }


...

  Actor * mWidget;

};

📡

Don't forget to cancel...

// RAII

RegisterObserver obs(*this, mWidget);
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Global State

Observer networks form a global state.

The same reason I dislike std::shared_ptr<>
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Pushing up the daisies

Memory management issues: 


- dead subjects


- missing observers

Blissfully dangling...
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Pushing up the daisies
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