

@ciura_victor
Victor Ciura

Principal Engineer

CppCon 2021
October 26th

Spooky Action at a Distance

https://twitter.com/ciura_victor

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance X

Abstract

 I hate the term “Design Patterns”. It implies there are universally applicable solutions to some common code
scenarios. Just codifying existing practice into some rules and blindly following them is a comfortable path, but
not the optimal one. It turns out it’s not as easy as following recipes. Each situation and best associated
solution is unique.

 However there is value in having uniform code structure throughout a project. So this topic is not to be
discarded just yet, rather it needs more careful examination.

 In terms of inspectable properties of objects, what have we learned from years of OO influence from other
languages and frameworks? How can we leverage these borrowed techniques in a value-oriented context?
Does C++ benefit from special considerations?

 I think it’s time to revisit our old friend, the Observer pattern - from “theory” to practice. I’m not going to offer
The Solution, rather we’re going to examine tradeoffs for several possible implementations, in various usage
scenarios from a real project.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 3

About me

Advanced Installer Clang Power Tools

@ciura_victor

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 4

Online presentation

Q & A
Use the Q&A tab in Zoom

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 5

Spooky What ?

Spooky Action at a Distance

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 6

Spooky What ?

Entangled particles 

 

Quantum entanglement or "spooky action at a distance"

as Albert Einstein famously called it, is the idea that the

fates of tiny particles are linked to each other even if

they're separated by long distances.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 7

Alternative Title

Revisiting Observers

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 8

Alternative Title

Subscribe(Observer)

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 9

Design Patterns

I hate the term “Design Patterns”

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 10

Design Patterns

It implies there are universally applicable solutions to some common code scenarios.

Just codifying existing practice into some rules and blindly following them is a

comfortable path, but not the optimal one.

It turns out it’s not as easy as following recipes.

Each situation and best associated solution is unique.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 11

Design Patterns

However there is value in having uniform code structure throughout a project.

So this topic is not to be discarded just yet, rather it needs more careful examination.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 12

GoF Book

A classic

Too formal & dry

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 13

Game Programming Patterns

Bob Nystrom

amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906/

gameprogrammingpatterns.com

https://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906/
http://gameprogrammingpatterns.com/

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 14

Related Session - CppCon 2021

Klaus Iglberger - Design Patterns: Facts and Misconceptions

Design Patterns have proven to be useful over several decades and knowledge about
them is still very important to design robust, decoupled systems. However, in recent
decades a lot of misconceptions have piled up, many based on misunderstandings
about software design in general and Design Patterns in particular.

This purpose of this talk is to help to separate facts from misconceptions. It explains
what software design is, how Design Patterns fit in, and what an idiom is.

https://sched.co/nv3J

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 15

Related Session - CppCon 2021

Klaus Iglberger - Design Patterns: Facts and Misconceptions

Addresses the following misconceptions about Design Patterns:

- Design Patterns are outdated and have become irrelevant

- The GoF Design Patterns are nothing but idioms

- The GoF Design Patterns are limited to object-oriented programming

- std::make_unique is a Design Pattern and helps to adhere to SRP

https://sched.co/nv3J

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 16

Observer Pattern

In terms of inspectable properties of objects:

What have we learned from years of OO influence from other languages and
frameworks?

How can we leverage these borrowed techniques in a value-oriented context?

Does C++ benefit from special considerations?

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 17

Observer Pattern

Let's revisit our old friend, the Observer pattern - from theory to practice.

I’m not going to offer The Solution™

We’re going to examine tradeoffs for several possible implementations, in various usage

scenarios from a real project.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 18

Observer Pattern

Observers are everywhere...

Think:

MVC

MVVM

Qt signal-slot mechanism

not just GUI ↔ model, also model ↔ model

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 19

Observer Pattern

It's a show with Actors and Actions

Subject/Actor doesn’t know what (type) the Observers are.

It just knows that they exist and how to notify them when certain actions occur.

Low Coupling

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 20

Subscription Model

Tune-in to a particular radio station

📡

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 21

Remote Objects

Inspectable properties and remote objects 
"spooky action at a distance"

class Widget

{

 Data mData;

public:

 void Set(const Data & d) {

 if (d != mData) {

 mData = d;

 NotifyObservers();

 }

 }

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 22

Subscription Order

Observers added in a certain order.

Do they respond in the same order?

class Widget

{

 ... Salient Data

 std::vector<IObserver *> mObservers;

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 23

Subscribing

void Widget::AddObserver(IObserver & aObserver)

{

 // too simple, right?

 mObservers.push_back(&aObserver);

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 24

Over-subscribing

Adding an observer more than once?

void Widget::AddObserver(IObserver & aObserver)

{

 auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);

 if (found == mObservers.end())

 mObservers.push_back(&aObserver);

}

Do you want to allow an observer to subscribe more than once?

Do you expect the observer to be called twice for the same event?

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 25

Over-subscribing

What about local reasoning?

void Func()

{

 obj->AddObserver(*this);

 ... // do something important

 obj->RemoveObserver(*this); // what if this obs was already added before?

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 26

Over-subscribing

What about local reasoning?

void Func()

{

 RegisterObserver obs(*this, actor); // RAII remember if we added

 ... // do something important

 // ~RegisterObserver() removes *this from observers if we added in C-tor

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 27

Over-subscribing

Signal the caller if the registration was "successful"

bool Widget::AddObserver(IObserver & aObserver)

{

 auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);

 if (found != mObservers.end())

 return false; // observer was already registered

 mObservers.push_back(&aObserver);

 return true;

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 28

Over-subscribing

Adding an observer more than once?

void Widget::AddObserver(IObserver & aObserver)

{

 mObservers.push_back(&aObserver);

}

We expect the observer to be called twice for the same event.

Local reasoning - restricted lifetime. 🤔

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 29

Unsubscribe

Removing an observer not in the list (already removed?)

void Widget::RemoveObserver(IObserver & aObserver)

{

 auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);

 if (found != mObservers.end())

 mObservers.erase(found);

}

For multiple registration scenario, what if we remove the wrong instance?

(sensitive to order of notification)

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 30

Unsubscribe

Removing all instances of this observer (multiple registration)

void Widget::RemoveObserver(IObserver & aObserver)

{

 mObservers.erase(

 std::remove(mObservers.begin(), mObservers.end(), &aObserver),

 mObservers.end());

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 31

Unsubscribe

Removing all instances of this observer (multiple registration)

void Widget::RemoveObserver(IObserver & aObserver)

{

 std::erase(mObservers, &aObserver); // C++20 safer than erase-remove idiom

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 32

Priority

Who should be notified first?

void Widget::AddObserver(IObserver & aObserver)

{

 auto found = std::find(mObservers.begin(), mObservers.end(), &aObserver);

 if (found == mObservers.end())

 mObservers.insert(mObservers.begin(), &aObserver);

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 33

Priority

Do we need priority buckets?

class Widget

{

 ... mSalientData;

 std::vector<IObserver *> mObserversRing0;

 std::vector<IObserver *> mObserversRing1;

 std::vector<IObserver *> mObserversRing2;

 ...

};

🏇🏇🏇

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 34

Priority

Do we need priority buckets?

void Widget::AddObserver(IObserver & aObserver, Priority p)

{

 ...

 // what happens if an observer is registered (by mistake)

 // with different priorities?

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 35

Broadcast

Notify all registered observers, in order:

void Widget::NotifyObservers()

{

 for (auto & observer : mObservers)

 observer->WidgetChanged(this);

} 📢

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 36

Tune-in

Tune-in and react to the event triggered by the actor:

void SomeObserver::WidgetChanged(Actor * sender)

{

 // react in some way to the changed object (actor)

 ...

}

📡

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 37

Unsubscribe

Safe to deregister at any time?

What if an observer wants to remove itself after receiving a notification?

void SomeObserver::WidgetChanged(Actor * sender)

{

 ... // react in some way to the changed object (actor)

 sender->RemoveObserver(*this); // WHAT?! don't care about future events

}

📡

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 38

Unsubscribe

Safe to deregister at any time?

What if an observer wants to remove itself after receiving a notification?

void SomeObserver::WidgetChanged(Actor * sender)

{

 ... // react in some way to the changed object (actor)

 sender->RemoveObserver(*this); // WHAT?! don't care about future events

}

📡

for (auto & observer : mObservers)

 observer->WidgetChanged(this);

std::erase(mObservers, &aObserver); 🔥

↪

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 39

Unsubscribe

How can we make recursive remove more resilient?

bool Widget::RemoveObserver(IObserver & aObserver)

{

 for(auto it = mObservers.begin(); it != mObservers.end(); ++it)

 {

 if (*it == &aObserver)

 {

 *it = nullptr; // replace observer with a sentinel

 return true;

 }

 }

 return false;

}

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 40

Broadcast

Notify all registered observers:

void Widget::NotifyObservers()

{

 for (auto & observer : mObservers)

 {

 if (observer)

 observer->WidgetChanged(this);

 }

 std::erase(mObservers, nullptr); // deferred cleanup of removed observers

}

📢

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 41

Register

Recursive add observer has the same problem, but it's more rare in practice.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 42

Small Objects

Can small objects afford to have observers?

class SmallObject

{

 ... mSalientData;

 std::vector<IObserver *> mObservers;

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 42

Small Objects

Can small objects afford to have observers?

class SmallObject

{

 ... mSalientData;

 std::vector<IObserver *> mObservers;

};

What if some instances will never have a registered observer?

An empty std::vector is not tiny.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 43

Small Objects

class SmallObject

{

 ... mSalientData;

 LazyVector<IObserver *> mObservers;

};

We can use an indirection to "fault-in" the std::vector creation when first needed:

 operator*()

 operator->() {

 if (mPtr == nullptr)

 mPtr = new std::vector<Type>();

 return mPtr;

}

Small objects can be register observers lazily

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 44

Lots of Objects

What if we have lots of these small objects?

We need to use some additional aside structure to keep a record of all observers for
each object.

class GlobalBottleneck

{

 // (Un)RegisterOrbserverFor(const Actor *, IObserver *);

 std::unordered_map<const Actor*, std::vector<IObserver *>> mObservers;

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 45

Threads

Multi-lane highway to... crashes🔥

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 46

Threads

Put a mutex bottleneck on it !

Guard each function with a mutex:

- Widget::Set()

- Widget::AddObserver()

- Widget::RemoveObserver()

- Widget::NotifyObservers()

Recursive add/remove observers, bites again!

recursive_mutex ? 😄

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 47

Threads

class Widget

{

 Data mData;

 std::recursive_mutex mMtx;

public:

 void Set(const Data & d)

 {

 std::lock_guard<recursive_mutex> lock(mMtx);

 if (d != mData) {

 mData = d;

 NotifyObservers();

 }

 }

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 48

Threads

Not bulletproof!

You can get in a dead-lock situation.

recursive_mutex 😔

🔁

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 49

Our Values

What about Squaring the Circle ?

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 49

Our Values

What about Squaring the Circle ?

Value-oriented design in an Object-oriented system

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 50

Our Values

youtube.com/watch?v=SAMR5GJ_GqA

https://www.youtube.com/watch?v=SAMR5GJ_GqA

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 51

Threads

When in doubt, always make copies.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 52

Threads
void Widget::NotifyObservers()

{

 std::vector<IObserver *> cpy;

 {

 std::lock_guard<mutex> lock(mMtx);

 cpy = mObservers;

 }

 size_t count = cpy.size();

 for (size_t i = 0; i < count; ++i) // avoid the issues with iter invalidation

 {

 if (mObservers[i])

 cpy[i]->WidgetChanged(this);

 }

 {

 std::lock_guard<mutex> lock(mMtx);

 std::erase(mObservers, nullptr); // deferred cleanup of removed observers

 }

}

🤕

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 53

Threads

We probably need something like:

 QObject::deleteLater()

In general, even if you're not using Qt,

I think it's very instructive to learn how UI observers are designed to work in Qt.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 54

C++ Now 2016

www.youtube.com/watch?v=RVvVQpIy6zc

https://www.youtube.com/watch?v=RVvVQpIy6zc

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 55

Threads

Basically, in a multi-threaded context, it's almost impossible to implement

a solid Observer pattern

In real code you can't see the

deadlocks... until they happen.

Rule of thumb

Don't hold a lock

while calling unknown code.

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 56

Intrusive

Anyway, we don't all this mess inside our type:

- Widget::AddObserver()

- Widget::RemoveObserver()

- Widget::NotifyObservers(.)

...

And we want a generic/reusable template as a base.

NotifyEventA()

NotifyEventB()

NotifyEventC()

NotifyEventD()

NotifyEventE()

...

↪

class Widget : public Actor<Widget>

{

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 57

Remote Objects

Inspectable properties and remote objects 

🔭
"spooky action at a distance"

class Widget : public Actor<Widget>

{

 Data mData;

public:

 void Set(const Data & d) {

 if (d != mData) {

 mData = d;

 NotifyObservers();

 }

 }

};

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 58

Remote Observer

class RemoteObserver : public IObserver

{

 RemoteObserver() {

 mWidget->AddObserver(*this);

 }

 ~RemoteObserver(){

 mWidget->RemoveObserver(*this);

 }

 void WidgetChanged(Actor * sender) override

 {

 // react in some way to the changed object (actor)

 sender->Query???();

 }

 ...

 Actor * mWidget;

};

📡

EventA()

EventB()

EventC()

EventD()

EventE()

...

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 59

Dangling

class RemoteObserver : public IObserver

{

 RemoteObserver() {

 mWidget->AddObserver(*this);

 }

 ~RemoteObserver(){

 mWidget->RemoveObserver(*this);

 }

...

 Actor * mWidget;

};

📡

Don't forget to cancel...

// RAII

RegisterObserver obs(*this, mWidget);

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 60

Global State

Observer networks form a global state.

The same reason I dislike std::shared_ptr<>

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 61

Pushing up the daisies

Memory management issues:

- dead subjects

- missing observers

Blissfully dangling...

2021 Victor Ciura | @ciura_victor - Spooky Action at a Distance 62

Pushing up the daisies

@ciura_victor
Victor Ciura

Principal Engineer

CppCon 2021
October 26th

Spooky Action at a Distance

https://twitter.com/ciura_victor

