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⚠ Warning

So You Think You Can #

Not a C# workshop



Abstract
Most programming languages offer some kind of associative “arrays” or containers. They may be called 
differently: maps, dictionaries, hash-maps, unordered-maps, hash-tables, etc. 

If you’ve never heard of them, this workshop is for you. If you’ve seen them before, but you’re not sure 
which one to use for a particular task, this workshop is for you. If you’re confident in using such fast lookup 
structures, great! But you’ll still be surprised by the details we’re going to cover in this lecture. 

After this journey from the very basics of lookup data structures up to advanced hashing techniques, you’ll 
feel more confident when & how to use them effectively. 

This workshop assumes familiarity with the C++ language, as we'll focus on hashing facilities in the 
standard library and beyond. We'll take a deep dive into hashing algorithms and hashed data structures, 
both in design and examples.



🎓 What they teach you



🎓 What they teach you



🎓 What they teach you

O(n log n)



The Big-O

wikipedia.org/wiki/Computational_complexity_theory

https://en.wikipedia.org/wiki/Computational_complexity_theory


What about Data Structures ? 📦
Data structures along with the operations they provide, 
also have complexity guarantees



STL Containers Big-O cheat-sheet



The difference between Efficiency and Performance

   Why do we care ?

   Because:  “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

          Efficiency and performance are not necessarily dependant on one another

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures



What about Performance ? 🚀

How fast can the CPU execute each step from the algorithms.

This is mostly determined by the native (CPU) data types used 

and your choice of data structures.



🎓 What they teach you

That’s all great and still relevant, 

but...



The 90s happened...



The 90s happened...



The 90s happened...



The 90s happened...

Cache



The 90s happened...



The 90s happened...
80486 (1989)
This is the first CPU of this generation which has some cache on the CPU.
It is a 8KB unified cache which means it is used for data and instructions.



The 90s happened...

80586 (1993)

The 586 or Pentium-1 uses a a split level 1 cache. 
8 KB each for data and instructions. 

The cache was split so that the data and instruction caches 
could be individually tuned for their specific use. 

You still have a small yet very fast 1st cache near the CPU, 
and a larger but slower 2nd cache on the motherboard.



The 90s happened...

80686 (1995)

The 686 or Pentium Pro chip, depending on the model, 
had a 256Kb, 512KB or 1MB on board cache. 

Half the space in the chip is used by the cache.



The 90s happened...

Pentium 2 (1997) 

For economy reasons the 2nd cache is not in the CPU. 

CPU package is on a PCB with separate chips for:  
● CPU (and 1st cache) 
● 2nd cache



The 90s happened...

Pentium III (1999)
Pentium 4   (2000)

As technology progresses and we start put create chips with 
smaller components it gets financially possible to put the 2nd 
cache back in the actual CPU die. 

However there is still a split: 
Very fast 1st cache snuggled up to the CPU. With one 1st 
cache per CPU core and a larger but less fast 2nd cache next 
to the core.



L1 and L2 caches not enough…

=> L3 cache
Nehalem 1st gen Core i7 series (2008)



Cache Latency

Core i7 Xeon 5500 Data Source Latency

local  L1 CACHE hit,                              ~4 cycles (   2.1 -  1.2 ns )
local  L2 CACHE hit,                             ~10 cycles (   5.3 -  3.0 ns )
local  L3 CACHE hit, line unshared               ~40 cycles (  21.4 - 12.0 ns )
local  L3 CACHE hit, shared line in another core ~65 cycles (  34.8 - 19.5 ns )
local  L3 CACHE hit, modified in another core    ~75 cycles (  40.2 - 22.5 ns )

local  DRAM                                                   ~60 ns
remote DRAM                                                  ~100 ns



● Memory Layout

● Memory Access Patterns



Container access patterns

Jumping around through memory, 

chasing pointers...



Further Study

ciura.ro/presentations/2021/Open4Tech/ChasingNodes.pdf

https://ciura.ro/presentations/2021/Open4Tech/Chasing%20Nodes%20-%20Victor%20Ciura%20-%20Open4Tech%202021.pdf


Data structures… everywhere



STL

cppreference.com/w/cpp/container

vector

array

forward_list

deque

list

map

set

unordered_set

multiset

multimap

priority_queue

queuestack

unordered_map

unordered_multiset

unordered_multimap

https://en.cppreference.com/w/cpp/container


www.caphyon.ro/open4tech-2021-a-list-of-data-structures-you-should-add-in-your-learning-queue/

https://www.caphyon.ro/open4tech-2021-a-list-of-data-structures-you-should-add-in-your-learning-queue/


90% of situations, a great choice*

std::vector

std::array

* when performance matters



Today’s focus

Most programming languages offer some kind of associative 

“arrays” or containers. 

They may be called differently: 

- maps
- dictionaries
- hash-maps
- unordered-maps
- hash-tables 



Today’s focus

unordered_set

unordered_map

unordered_multiset

unordered_multimap



Hash Functions & Hash Tables

A hash function is any function that can be used to map 

data of arbitrary size to data of fixed size (hash code).

Hash functions are used in hash tables, to quickly locate 

a data record given its search key. 



Hash Functions & Hash Tables

The hash function is used to map the search key to an 

index; the index gives the place in the hash table where the 

corresponding record should be stored/found. 

The domain of a hash function (the set of possible keys) 

is larger than its range (the number of different table 

indices), and so it will map several different keys to the 

same index. 



Hash Functions & Hash Tables

Each slot (bucket) of a hash table is associated with a 

set of records, rather than a single record.



Visualize it



Hash Function Properties

❖ Determinism

A hash procedure must be deterministic — meaning that 

for a given input value it must always generate the same 

hash value.



Hash Function Properties

❖ Uniformity

A good hash function should map the expected inputs as 

evenly as possible over its output range. 

That is, every hash value in the output range should be 

generated with roughly the same probability. 



Hash Function Properties

❖ Defined range

It is often desirable that the output of a hash function 

have fixed size. 

If, for example, the output is constrained to 32-bit integer 

values, the hash values can be used to index into an array 

(eg. hash tables).



Hash Function Properties

❖ Non-invertible

In cryptographic applications, hash functions are 

typically expected to be practically non-invertible, meaning 

that it is not realistic to reconstruct the input datum from 

its hash value alone, without spending great amounts of 

computing time.



Questions

● How should one combine hash codes from your bases and data 
members to create a “good” hash function?

● How does one know if you have a good hash function?

● If somehow you knew you had a bad hash function, how would 
you change it for a type built out of several bases and/or 
data members?



How does one hash this class?

  class Customer 
  { 
    std::string firstName; 
    std::string lastName; 
    int         age;  
    // ...  
  }; 
  



std::hash<Key>

Defined in header <functional>

 std::size_t h = std::hash<std::string>{}(firstName);

● Accepts a single parameter of type Key

● Returns a value of type size_t that represents the hash value of the 

parameter

● Does not throw exceptions when called

● If k1 and k2 are equal => std::hash<Key>()(k1) == std::hash<Key>()(k2)

● If k1 and k2 are different, the probability that std::hash<Key>()(k1) == 

std::hash<Key>()(k2) should be very small, approaching 

1.0/std::numeric_limits<size_t>::max()



std::hash<Key>

Standard specializations for basic types:

template< class T > struct hash<T*>;

template<> struct hash<bool>;
template<> struct hash<char>;
template<> struct hash<signed char>;
template<> struct hash<unsigned char>;
template<> struct hash<char16_t>;
template<> struct hash<char32_t>;
template<> struct hash<wchar_t>;
template<> struct hash<short>;
template<> struct hash<unsigned short>;
template<> struct hash<int>;
template<> struct hash<unsigned int>;
template<> struct hash<long>;
template<> struct hash<long long>;
template<> struct hash<unsigned long>;
template<> struct hash<unsigned long long>;
template<> struct hash<float>;
template<> struct hash<double>;
template<> struct hash<long double>;

Standard specializations for library types:

std::hash<std::string>
std::hash<std::wstring>
std::hash<std::unique_ptr>
std::hash<std::shared_ptr>
std::hash<std::bitset>
//...



class Customer 
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
// ... 
  std::size_t hash_code() const
  {
    std::size_t k1 = std::hash<std::string>{}(firstName);
    std::size_t k2 = std::hash<std::string>{}(lastName);
    std::size_t k3 = std::hash<int>{}(age);

    return hash_combine(k1, k2, k3);  // what algorithm is this?
  }
}; 

Is this a good hash strategy?

What if we wanted to use another hash algorithm?



boost::hash_combine

template <class T>
inline void hash_combine(std::size_t & seed, const T & v)
{
    std::hash<T> hasher;
    seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

The magic number is supposed to be 32 “random” bits: 
- each is equally likely to be 0 or 1
- with no simple correlation between the bits

A common way to find a pattern of such bits is to use the binary expansion of an 
irrational number.

In this case, that number is the reciprocal of the golden ratio:

φ = (1 + sqrt(5)) / 2
2^32 / φ = 0x9e3779b9

http://stackoverflow.com/questions/35985960/c-why-is-boosthash-combine-the-best-way-to-combine-hash-values

http://stackoverflow.com/questions/35985960/c-why-is-boosthash-combine-the-best-way-to-combine-hash-values


FNV-1A 

std::size_t fnv1a(void const * key, std::size_t len) 
{ 
  std::size_t h = 14695981039346656037u; 

  unsigned char const * p = static_cast<unsigned char const*>(key); 
  unsigned char const * const e = p + len; 
  for (; p < e; ++p) 
    h = (h ^ *p) * 1099511628211u;

  return h; 
}

The FNV hash was designed for fast hash-table and checksum use (not cryptography).

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function


Hash with FNV-1A

class Customer 
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
// ... 
  std::size_t hash_code() const
  {
    std::size_t k1 = fnv1a(firstName.data(), firstName.size());
    std::size_t k2 = fnv1a(lastName.data(), lastName.size());
    std::size_t k3 = fnv1a(&age, sizeof(age));

    return hash_combine(k1, k2, k3);  // what algorithm is this?
  }
}; 

Ok, but our algorithm is still “polluted” by the combine step...



Anatomy Of A Hash Function

  1. Initialize internal state.

  2. Consume bytes into internal state.

  3. Finalize internal state to result_type (usually size_t).



Anatomy Of A Hash Function 
std::size_t fnv1a(void const * key, std::size_t len) 
{ 
  std::size_t h = 14695981039346656037u; ⇐ initialize internal state

  // consume bytes into internal state:
  unsigned char const * p = static_cast<unsigned char const*>(key); 
  unsigned char const * const e = p + len; 
  for (; p < e; ++p) 
    h = (h ^ *p) * 1099511628211u;

  return h; ⇐ finalize internal state to size_t
}



Repackaging this algorithm 
to make the three stages separately accessible

class fnv1a 
{ 
  std::size_t h = 14695981039346656037u;    ⇐ initialize internal state
public:
 

  // consume bytes into internal state
  void operator()(void const * key, std::size_t len) noexcept 
  { 
    unsigned char const * p = static_cast<unsigned char const*>(key); 
    unsigned char const * const e = p + len; 
    for (; p < e; ++p) 
      h = (h ^ *p) * 1099511628211u;
  }
 
  explicit operator size_t() noexcept  ⇐ finalize internal state to size_t
  { 
    return h;
  }   
};
 



class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  std::size_t hash_code() const
  {
    fnv1a hasher;

    hasher(firstName.data(), firstName.size());
    hasher(lastName.data(), lastName.size());
    hasher(&age, sizeof(age));

    return static_cast<std::size_t>(hasher); // no more hash_combine() !!!
  }
};

🔶 The same technique can be 
used with almost every existing 
hashing algorithm.

Now we are using a “pure” FNV-1A algorithm 
for the entire data structure.



Combining Types

class Sale 
{ 
  Customer customer;  
  Product  product;  
  Date     date;
 
public: 
 
  std::size_t hash_code() const
  {
    std::size_t h1 = customer.hash_code();
    std::size_t h2 = product.hash_code();
    std::size_t h3 = date.hash_code();
    
    return hash_combine(h1, h2, h3); // OMG, it’s back :(
  }
};

How do we use just FNV-1A for 
the entire class?



hash_append()

Proposal by:
 

Howard Hinnant, Vinnie Falco, John Bytheway

N3980 / 2014-05-24



hash_append()

class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  std::size_t hash_code() const
  {
    fnv1a hasher;

    hasher(firstName.data(), firstName.size());
    hasher(lastName.data(), lastName.size());
    hasher(&age, sizeof(age));

    return static_cast<std::size_t>(hasher); // no more hash_combine() !!!
  }
};



hash_append()

class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  friend void hash_append(fnv1a & hasher, const Customer & c) 
  { 
    hasher(c.firstName.data(), c.firstName.size()); 
    hasher(c.lastName.data(), c.lastName.size()); 
    hasher(&c.age, sizeof(c.age));
  }
};

Let some other piece of code construct and finalize fnv1a.
Customer only appends to the state of fnv1a.



hash_append()

class Sale 
{ 
  Customer customer;  
  Product  product;  
  Date     date;
 
public: 
 
  friend void hash_append(fnv1a & hasher, const Sale & s)
  {
    hash_append(hasher, s.customer);
    hash_append(hasher, s.product);
    hash_append(hasher, s.date);
  }
 
};

Types can recursively build upon 
one another’s hash_append() to 
build up state in fnv1a object.



hash_append()

class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  friend void hash_append(fnv1a & hasher, const Customer & c) 
  { 
    hash_append(hasher, c.firstName); 
    hash_append(hasher, c.lastName); 
    hash_append(hasher, c.age);
  }
};

Primitive and std-defined types can be given hash_append() overloads 
=> simplified & uniform interface



hash_append() / Abstracting the algorithm

class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  template<class HashAlgorithm>
  friend void hash_append(HashAlgorithm & hasher, const Customer & c) 
  { 
    hash_append(hasher, c.firstName); 
    hash_append(hasher, c.lastName); 
    hash_append(hasher, c.age);
  }
};

If all hash algorithms use a uniform interface, we can swap any 
hasher into our data type.



hash_append() / Primitives

For primitive types that are contiguously hashable 
we can just send their bytes to the hash algorithm in hash_append().

Eg.

template <class HashAlgorithm> 
void hash_append(HashAlgorithm & hasher, int i) 
{ 
  hasher(&i, sizeof(i)); 
}

template <class HashAlgorithm, class T> 
void hash_append(HashAlgorithm & hasher, T * p) 
{ 
  hasher(&p, sizeof(p)); 
}



hash_append()

A complicated class is ultimately made up of scalars located in 
discontiguous memory.

hash_append() appends each byte to the HashAlgorithm state by 
recursing down into the data structure to find the scalars.

Prerequisites:

● Every type has a hash_append() overload

● The overload will either call hash_append() on its bases and 

members, or it will send bytes of its memory to the HashAlgorithm

● No type is aware of the concrete HashAlgorithm type.



How to use hash_append()

    

    HashAlgorithm hasher;

    hash_append(hasher, my_type);

    return static_cast<size_t>(hasher);



Wrap the whole thing up in a conforming hash functor

template <class HashAlgorithm> 
struct GenericHash 
{ 
  using result_type = typename HashAlgorithm::result_type; 
 
  template <class T> 
  result_type operator()(const T & t) const noexcept 
  { 
    HashAlgorithm hasher;
    hash_append(hasher, t);
    return static_cast<result_type>(hasher);
  }
};

unordered_set<Customer, GenericHash<fnv1a>> my_set;



Change Hashing Algorithms

unordered_set<Sale, GenericHash<fnv1a>> my_set;

unordered_set<Sale, GenericHash<SipHash>> my_set;

unordered_set<Sale, GenericHash<Spooky>> my_set;

unordered_set<Sale, GenericHash<Murmur>> my_set;

unordered_set<Sale, GenericHash<CityHash>> my_set;

  It becomes trivial to experiment with different hashing algorithms 
to optimize performance, minimize collisions.
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Recap from Part 1



Hash Function Properties

❖ Determinism

❖ Uniformity

❖ Defined range

❖ Non-invertible



Anatomy Of A Hash Function

  1. Initialize internal state.

  2. Consume bytes into internal state.

  3. Finalize internal state to result_type (usually size_t).



Repackaging this algorithm 
to make the three stages separately accessible

class fnv1a 
{ 
  std::size_t h = 14695981039346656037u;    ⇐ initialize internal state
public:
 

  // consume bytes into internal state
  void operator()(void const * key, std::size_t len) noexcept 
  { 
    unsigned char const * p = static_cast<unsigned char const*>(key); 
    unsigned char const * const e = p + len; 
    for (; p < e; ++p) 
      h = (h ^ *p) * 1099511628211u;
  }
 
  explicit operator size_t() noexcept  ⇐ finalize internal state to size_t
  { 
    return h;
  }   
};
 



hash_append()

class Customer  
{ 
  std::string firstName; 
  std::string lastName; 
  int         age; 
public: 
  // ... 

  friend void hash_append(fnv1a & hasher, const Customer & c) 
  { 
    hasher(c.firstName.data(), c.firstName.size()); 
    hasher(c.lastName.data(), c.lastName.size()); 
    hasher(&c.age, sizeof(c.age));
  }
};

Let some other piece of code construct and finalize fnv1a.
Customer only appends to the state of fnv1a.



hash_append()

class Sale 
{ 
  Customer customer;  
  Product  product;  
  Date     date;
 
public: 
 
  friend void hash_append(fnv1a & hasher, const Sale & s)
  {
    hash_append(hasher, s.customer);
    hash_append(hasher, s.product);
    hash_append(hasher, s.date);
  }
 
};

Types can recursively build upon 
one another’s hash_append() to 
build up state in fnv1a object.



Wrap the whole thing up in a conforming hash functor

template <class HashAlgorithm> 
struct GenericHash 
{ 
  using result_type = typename HashAlgorithm::result_type; 
 
  template <class T> 
  result_type operator()(const T & t) const noexcept 
  { 
    HashAlgorithm hasher;
    hash_append(hasher, t);
    return static_cast<result_type>(hasher);
  }
};

std::unordered_set<Customer, GenericHash<fnv1a>> my_set;



Change Hashing Algorithms

unordered_set<Sale, GenericHash<fnv1a>> my_set;

unordered_set<Sale, GenericHash<SipHash>> my_set;

unordered_set<Sale, GenericHash<Spooky>> my_set;

unordered_set<Sale, GenericHash<Murmur>> my_set;

unordered_set<Sale, GenericHash<CityHash>> my_set;

  It becomes trivial to experiment with different hashing algorithms 
to optimize performance, minimize collisions.



std::hash<Key>

Defined in header <functional>

 std::size_t h = std::hash<std::string>{}(firstName);

● Accepts a single parameter of type Key

● Returns a value of type size_t that represents the hash value of the 

parameter

● Does not throw exceptions when called

● If k1 and k2 are equal => std::hash<Key>()(k1) == std::hash<Key>()(k2)

● If k1 and k2 are different, the probability that std::hash<Key>()(k1) == 

std::hash<Key>()(k2) should be very small, approaching 

1.0/std::numeric_limits<size_t>::max()



std::hash<Key>

Standard specializations for basic types:

template< class T > struct hash<T*>;

template<> struct hash<bool>;
template<> struct hash<char>;
template<> struct hash<signed char>;
template<> struct hash<unsigned char>;
template<> struct hash<char16_t>;
template<> struct hash<char32_t>;
template<> struct hash<wchar_t>;
template<> struct hash<short>;
template<> struct hash<unsigned short>;
template<> struct hash<int>;
template<> struct hash<unsigned int>;
template<> struct hash<long>;
template<> struct hash<long long>;
template<> struct hash<unsigned long>;
template<> struct hash<unsigned long long>;
template<> struct hash<float>;
template<> struct hash<double>;
template<> struct hash<long double>;

Standard specializations for library types:

std::hash<std::string>
std::hash<std::wstring>
std::hash<std::unique_ptr>
std::hash<std::shared_ptr>
std::hash<std::bitset>

//...



</Recap>



std::hash<Key>

Standard specializations for library types:

std::hash<std::string>
std::hash<std::wstring>

std::hash<std::unique_ptr>
std::hash<std::shared_ptr>

std::hash<std::bitset>

//...



Exploring string hash tables
<code walk-through>

What we want:
“A hash table mapping string keys (case-insensitive) to some custom data type.”

Starting point:

template<
  class Key,
  class T,
  class Hash     = std::hash<Key>,
  class KeyEqual = std::equal_to<Key>, ⇐ Why is this part of the interface? Why not Key::operator==()
  class Alloc    = std::allocator< std::pair<const Key, T> >
> 
class std::unordered_map;

What we need:

● A custom hash functor for case-insensitive strings
● A custom comparator functor, to compare strings ignoring character case

http://en.cppreference.com/w/cpp/utility/hash
http://en.cppreference.com/w/cpp/utility/functional/equal_to
http://en.cppreference.com/w/cpp/memory/allocator
http://en.cppreference.com/w/cpp/utility/pair


Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHash
{
  using HashedType = StringType;

  size_t operator()(const HashedType & aStr) const
  {
    std::hash<HashedType> hasher;  ⇐ we can use any hashing algorithm
    return hasher(aStr);
  }

  bool operator()(const HashedType & aStr1, const HashedType & aStr2) const
  {
    return aStr1 < aStr2;
  }

  struct KeyEquality
  {
    bool operator()(const HashedType & aStr1, const HashedType & aStr2) const
    {
      return aStr1 == aStr2;
    }
  };
};



Exploring string hash tables
<code walk-through>

typedef BasicStringHash<char>     StringHash;

typedef BasicStringHash<wchar_t>  StringHashW;

Eg.

std::unordered_map<wstring, TYPE, StringHashW, StringHashW::KeyEquality>



Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHashI
{
  using HashedType = StringType;
 
  size_t operator()(const HashedType & aStr) const
  {
    // make a lower-case copy of the input string
    HashedType lowerStr(aStr);
    ToLower(const_cast<Type *>(lowerStr.c_str()));

    std::hash<HashedType> hasher;
    return hasher(lowerStr);
  }

  bool operator()(const HashedType & aStr1, const HashedType & aStr2) const
  {
    return CompareI(aStr1, aStr2) < 0;
  }

  //...

};

Case-insensitive hashes



Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHashI
{
  //...

  struct KeyEquality
  {
    bool operator()(const HashedType & aStr1, const HashedType & aStr2) const
    {
      return CompareI(aStr1, aStr2) == 0;
    }
  };

private:
  static void ToLower(char    * aStr) {  ::CharLowerA(aStr);  }
  static void ToLower(wchar_t * aStr) {  ::CharLowerW(aStr);  }

  static int CompareI(const string & aStr1, const string & aStr2) 
  {  return ::lstrcmpiA(aStr1.c_str(), aStr2.c_str());  }

  static int CompareI(const wstring & aStr1, const wstring & aStr2)
  {  return ::lstrcmpiW(aStr1.c_str(), aStr2.c_str());  }

};

Case-insensitive hashes



Exploring string hash tables
<code walk-through>

typedef BasicStringHashI<char>     StringHashI;

typedef BasicStringHashI<wchar_t>  StringHashWI;

Eg.

std::unordered_map<wstring, TYPE, StringHashWI, StringHashWI::KeyEquality>

Case-insensitive hashes



Demo

Show me the code!



Research Topic for You

Optimal file-path (case-insensitive) 

hash functor for std::unordered_map<>

  
  

open4tech@caphyon.com



FilePath Hasher

Special type of case-insensitive hash: file-paths hash map.

(a hasher for the string representation of file paths, in a case-insensitive  file system) 

What we want:

std::unordered_map<FilePath, TYPE, FilePathHash, FilePathHash::KeyEquality>

Where FilePath encapsulates a std::wstring plus file specific methods.

What issues do we have with regular StringHashWI for file paths ?

std::unordered_map<FilePath, TYPE, StringHashWI, StringHashWI::KeyEquality>



FilePath Hasher

Requirements:

● The operations which have to be fast are  insertions  and  searches 

● Fast deletions would be desirable as well, but they are not a mandatory

requirement

● A tradeoff between faster search time and slower insert time is accepted (if a

faster search time can be achieved by slowing the insertion time a little bit)

● FilePathHash  should be a drop-in replacement for  StringHashWI  (same API)

● Benchmarks  for your FilePath hasher, having as baseline  StringHashWI
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