Opend4Tech Summer School 2021

So You Think You Can #

Building an app using Blockchain

A list< > of data structures you should add in your learning queue< >
Build a video call react app with WebRTC and Socket.io

Importance of good coding habits

Build cryptocurrencies exchange using React

Why we code

Getting a11y right

State of the Art Natural Language Processing for Noobs
Java Swing Crash Course

NETROM

28 iunie - 16 iulie 2021

http:/finf.ucv.rof~ summer-school/

DEPARTAMENTUL
DE INFORMATICA

Luni

Marti

Miercuri

Joi

Vineri

28 iunie

29 iunie

So You Think You Can #

So You Think You Can #

30 iunie

1 iulie

2 iulie

Building an app using

2-4pm (hashing algorithms & (hashing algorithms & N N :
containers) containers) o o 2 s b 5 - J Blockchain
Q d
4-6pm Why we code Why we code Getting ally right Java Swing Crash Course
5 iulie 6 iulie 7 iulie 8 iulie 9 iulie

2-4pm

Build a video call react Build a video call react

app with WebRTC and
Socket.io

app with WebRTC and
Socket.io

Build a video call react
app with WebRTC and
Socket.io

State of the Art
Natural Language
Processing for Noobs

State of the Art
Natural Language
Processing for Noobs

4-6pm
12 iulie 13 iulie 14 iulie 15 iulie 16 iulie
Build cryptocurrencies Build cryptocurrencies Code conventions: Code conventions:
2-4pm Importance of good Importance of good

exchange using React

exchange using React

coding habits

coding habits

4-6pm

N CAPHYQN

So You Think You Can #

Hashing Algorithms and Containers

_ Victor Ciura
inf.ucv.ro/~summer-school Principal Engineer

Y @ciura_victor ‘
June 2021 y

http://inf.ucv.ro/~summer-school/

1. Warning

So You Think You Can #

Not a C# workshop

Abstract

Most programming languages offer some kind of associative “arrays” or containers. They may be called
differently: maps, dictionaries, hash-maps, unordered-maps, hash-tables, etc.

If you've never heard of them, this workshop is for you. If you've seen them before, but you’re not sure
which one to use for a particular task, this workshop is for you. If you’re confident in using such fast lookup
structures, great! But you'll still be surprised by the details we're going to cover in this lecture.

After this journey from the very basics of lookup data structures up to advanced hashing techniques, you'll
feel more confident when & how to use them effectively.

This workshop assumes familiarity with the C++ language, as we'll focus on hashing facilities in the
standard library and beyond. We'll take a deep dive into hashing algorithms and hashed data structures,
both in design and examples.

% What they teach you

v oz w conuen 1 = The Art of Computer Programming

Combinatorial Algorithms, Part 1

The Art of Computer Programming

\ | : : ‘ = Sorting and Searching
- ‘ \ . ey The Art of Computer Programming
‘ \‘ 2 S Seminumerical Algorithms

INTRODUCTION TO

ALGORITHMS 2.7 The Art of Computer Programming
[nieo toirion 252 E Fundamental Algorithms

% What they teach you

A

o W

% What they teach you

initial call to sort entire array Quicksort (A, 1, length[A])

Quicksort (A, p, r)
if p < x
then g = Partition(A, p, r)
Quicksort (A, p, Q)
Quicksort (A, g+l, r)

Partition (A, p,)

x = A[p]
i = p-1
j = r+l
while TRUE

do repeat j = j-1
until A[Jj] <= x

repeat i = i+l
until A[i] >= x
if i< g
then exchange A[i], A[]]

else return j

The Big-O

. Algorithm

' Quick sort
' Merge sort

i Heap sort

| Smooth sort
|

' Bubble sort

| Insertion sort

| Selection sort

' Bogo sort

Data structure Time complexity:Best Time complexity:Average Time complexity:Worst Space complexity:Worst

Array
Array

Array

Array
Array
Array
Array
Array

O(nlog(n))
O(nlog(n))
O(n log(n))
O(n)
O(n)
O(n)

oA
O(n)

O(n log(n))

O(n log(n))

| O(n log(n))

O(nlog(n))

o)

O(r?)
O(r)
O(n nY)

wikipedia.org/wiki/Computational complexity

o(r?)

O(nlog(n))

O(nlog(n))

' O(n log(n)
o(r?)

o(r)
o(r?)
O(x)

O(n)
O(n)
O(1)
O(1)
O(1)
O(1)
O(1)
O(1)

theory

https://en.wikipedia.org/wiki/Computational_complexity_theory

What about Data Structures ? <

Data structures along with the operations they provide,

also have complexity guarantees

STL Containers Big-O cheat-sheet

A B c D E B G H |
1 C++ STL insert @end insert @pos erase @end erase @pos find sort iterator comment
2 vector 0(1) 0(dist(pos,end)) 0(1) 0(dist(pos,end)) 0o(n) 0(n*log(n)) RandomAccess array
3 dequeue @begin/@end 0(1)0(dist(pos,begin/end)) @begin/@end 0(1) O(dist(pos,begin/end)) 0(n) 0(n*log(n)) RandomAccess
4 list 0(1) 0(1) 0o(1) @pos 0(1); @key 0(n) o(n) 0(n*log(n)) Bidirectional doubly linked
5 stack 0(1) push() - 0(1) pop() - o(n) - same as container adaptor<dequeue, list, vector>
6 queue 0(1) push() - 0(1) pop() @begin - 0o(n) - same as container adaptor<dequeue, list>
7 set/map - 0(log(n)) - 0(;2;?;;&;2%;:??2;)) 0(log(n)) sorted Bidirectional red-black tree (balanced BST)
@pos avg 0(1) worst
8 unordered_set/ - avg 0(1); worst O(n) - P O(é%; gkly avg 0(1); - Forward hash_set/hash_map
unordered_map 0(count (key)) worst O(n)
adaptor<vector, dequeue> => constant
9 priority_queue push() 0(log(n)) - pop() 0(log(n)) - top() 0(1) - RandomAccess thie sxtreotion of the lergeet

(default) element, at the expense of
logarithmic insertion

o make_heap(range) 8?;2i2;?z§g - é?gt{gﬁ?ﬁf) - max is first O(n*log(n)) RandomAccess constructs a max heap in the range

The difference between Efficiency and Performance

Why do we care ?
Because: “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

Efficiency Performance
the amount of work you need to do how fast you can do that work
governed by your algorithm governed by your data structures

ﬁ Efficiency and performance are not necessarily dependant on one another

What about Performance ? 7

How fast can the CPU execute each step from the algorithms.

This is mostly determined by the native (CPU) data types used

and your choice of data structures.

% What they teach you

That's all great and still relevant,
but...

The 90s happened...

The 90s happened

The 90s happened...

intele
pentiume
w/ MMX™ tech

The 90s happened...

Cache

The 90s happened...

Cache Memory

Memory address

from processor Main memory accessed
if address notin cache

CACHE
, MAIN
| MEMORY

Compare withall : : ’
stored addresses |, ADDRESS DATA
simultaneously , , ——

L | Address not
Address found foundin cache

Address location

The 90s happened...

80486 (1989)
This is the first CPU of this generation which has some cache on the CPU.
It is a 8KB unified cache which means it is used for data and instructions.

The 90s happened...

80586 (1993)

The 586 or Pentium-1 uses a a split level 1 cache.
8 KB each for data and instructions.

The cache was split so that the data and instruction caches
could be individually tuned for their specific use.

You still have a small yet very fast 1st cache near the CPU,
and a larger but slower 2nd cache on the motherboard.

)

® 0

)

&)

)

GGG
A o

o

The 90s happened...

80686 (1995)

The 686 or Pentium Pro chip, depending on the model,
had a 256Kb, 512KB or 1MB on board cache.

',9
(aﬂou & o tha‘, o,

0
" .’ 01) d'zu ﬂnud ,:{', LV bl-c
\'::\nn\ﬂaunt‘oﬂf;v&(‘;uﬁgc "‘

Half the space in the chip is used by the cache.

AR I I

D]
"
"
™
»
£
™
»
B
- =

)
LC BE G B B N N R W N W)

The 90s happened...

Pentium 2 (1997)
For economy reasons the 2nd cache is not in the CPU.
CPU package is on a PCB with separate chips for:

e CPU (and 1st cache)
e 2nd cache

CPU 2nd CACHE

The 90s happened...

=@

Pentium III (1999)
Pentium 4 (2000)

As technology progresses and we start put create chips with
smaller components it gets financially possible to put the 2nd
cache back in the actual CPU die.

However there is still a split:

Very fast 1st cache snuggled up to the CPU. With one 1st
cache per CPU core and a larger but less fast 2nd cache next
to the core.

L1 and L2 caches not enough...

=>L3 cache

Nehalem 1st gen Core i7 series (2008)

L1 cache
Core

cache

’ Larger L2

Cache Latency

Core i7 Xeon 5500 Data Source Latency

local L1 CACHE hit,
local L2 CACHE hit,
local L3 CACHE hit,
local L3 CACHE hit,
local L3 CACHE hit,

local DRAM
remote DRAM

line unshared
shared line in another core
modified in another core

~4
~10
~40
~65
~75

cycles
cycles
cycles
cycles
cycles

AN NN NN

A WON
Ohr 201N
Noo,~,W-=

~100

ns

N =

NODNW-=-
GQOITOON

ns
ns
ns
ns
ns

N N N e’

e Memory Layout

e Memory Access Patterns

Container access patterns

Jumping around through memory,

chasing pointers...

struct proc

p_as

a_nsegs

a_flags

a_hat

a_tail

a_watchp

L el AVL
Tree

e

struct seg

s base

S size

S _as

s_tree

S_ops

s_data

struct seg

Stack ‘

Libraries

s_base

S_size

S_as

A

s_tree

$_0ps

s_data

struct seg

|
HEAP- malloc), sbrk()

s_base

S_size

Executable — DATA

S as

Executable - TEXT

s_ree

L AN

S 0ps

s_data

Further Study

Chasing Nodes

OpendTech: Graph Algorithms
January 21, 2021

T

Victor Ciura @
Y @ciura_victor .’ CAPHYUON

Principal Engineer

https://ciura.ro/presentations/2021/Open4Tech/Chasing%20Nodes%20-%20Victor%20Ciura%20-%20Open4Tech%202021.pdf

. Data structures... everywhere

SV

5311' ///;nordered_set

set unordered_map
4 array N
map unordered_multiset
vector
multiset unordered_multimap ///
deque
. multimap queus
forward_list 57’ stack

priority_queue

list

N /

cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container

A List<> Of Data Structures You Should Add In Your Learning Queue<>

In this workshop we'll explain the mechanics behind data structures, and we'll deep dive into the meaning and usage of the most

common ones.
Let's try together to get some insights in some data structures and their pitfalls.

We'll discover, by lots of examples, the strengths and weaknesses of each data structure and find good use cases for:

e Vector and List
e Stack and Queue

e Hash Table

e Graphs and Trees

Trainer: Nicolae Telechi

® Heap.

. , : Caphyon, Senior Software Developer
Difficulty: intermediate o .

Format: 2 days x 2h

Luni Marti __—Mliercuri Joi Vineri

28 iunie 29 iunie 30 iunie 1 iulie 2 iulie
ik hink A list<> of data A list<> of data
So You_Th1n You Can # So You Think You Can 4 structures you should structures you should Building an app using
2-4pm (hashing algorithms & (hashing algorithms & ; . : . A
containers) containers) add in your learning add in your learning Blockchain

queue<> queue<>

4-6pm Why we code Why we code Getting ally right Java Swing Crash Course

www.caphyon.ro/open4tech-2021-a-list-of-data-structures-you-should-add-in-your-learning-queue/

https://www.caphyon.ro/open4tech-2021-a-list-of-data-structures-you-should-add-in-your-learning-queue/

90% of situations, a great choice®

std::array

std: :vector

* when performance matters

Today’s focus

Most programming languages offer some kind of associative

“‘arrays” or containers.

They may be called differently:

maps

- dictionaries

- hash-maps

- unordered-maps
- hash-tables

Today’s focus

//funordered_set

unordered_map

unordered_multiset

unordered_multimap///

Hash Functions & Hash Tables

A hash function is any function that can be used to map
data of arbitrary size to data of fixed size (hash code).

Hash functions are used in hash tables, to guickly locate
a data record given its search key.

Hash Functions & Hash Tables

The hash function 1s used to map the search key to an
index; the index gives the place in the hash table where the
corresponding record should be stored/found.

The domain of a hash function (the set of possible keys)
is larger than its range (the number of different table
indices), and so it will map several different keys to the
same index.

Hash Functions & Hash Tables

Each slot (bucket) of a hash table is associated with a
set of records, rather than a single record.

Visualize it

hash
keys function buckets
00
01 | 521-8976
John Smith
02 | 521-1234
03
Lisa Smith
13
Sandra Dee
- —— | 521-9655
15

Hash Function Properties

< Determinism

A hash procedure must be deterministic — meaning that
for a given input value it must always generate the same
hash value.

Hash Function Properties

% Uniformity

A good hash function should map the expected inputs as
evenly as possible over its output range.

That is, every hash value in the output range should be
generated with roughly the same probability.

Hash Function Properties

% Defined range

It is often desirable that the output of a hash function
have fixed size.

If, for example, the output is constrained to 32-bit integer

values, the hash values can be used to index into an array
(eg. hash tables).

Hash Function Properties

% Non-invertible

In cryptographic applications, hash functions are
typically expected to be practically non-invertible, meaning
that it is not realistic to reconstruct the input datum from

its hash value alone, without spending great amounts of
computing time.

Questions

How should one combine hash codes from your bases and data
members to create a “good” hash function?

How does one know if you have a good hash function?

If somehow you knew you had a bad hash function, how would
you change it for a type built out of several bases and/or
data members?

class

}s

std
std
int

How does one hash this class?

Customer

::string firstName;
::string lastName;
age;

/] ...

std: :hash<Key>

Defined in header <functional>
std::size_ t h = std::hash<std::string>{}(firstName);

e Accepts a single parameter of type Key

e Returns a value of type size t that represents the hash value of the
parameter

e Does not throw exceptions when called

e If k1l and k2 are equal => std::hash<Key>()(kl) == std::hash<Key>()(k2)

e If k1 and k2 are different, the probability that std::hash<Key>()(kl) ==
std: :hash<Key>()(k2) should be very small, approaching

1.9/std::numeric_limits<size t>::max()

Standard specializations for basic types:

std: :hash<Key>

template< class T > struct hash<T*>;

template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

hash<bool>;
hash<char>;
hash<signed char>;
hash<unsigned char>;
hash<charl6e_t>;
hash<char32_t>;
hash<wchar_t>;
hash<short>;
hash<unsigned short>;
hash<int>;
hash<unsigned int>;
hash<long>;

hash<long long>;
hash<unsigned long>;
hash<unsigned long long>;
hash<float>;
hash<double>;
hash<long double>;

Standard specializations for Library types:

std:
std:
std:
std:
std:
//...

:hash<std:
:hash<std:
:hash<std:
thash<std:
:hash<std:

:string>
:wstring>
:unique_ptr>
:shared_ptr>
:bitset>

class Customer

{

std::string firstName;
std::string lastName;

int age;

public:

/] ...
std::size_t hash_code() const
{

std::size t k1
std::size_t k2
std::size_t k3

std::hash<std::string>{}(firstName);
std: :hash<std::string>{}(lastName);
std: :hash<int>{}(age);

return hash_combine(kl, k2, k3); // what algorithm is this?

}
}s

Is this a good hash strategy?

What if we wanted to use another hash algorithm?

boost: :hash_combine

template <class T>
inline void hash_combine(std::size_t & seed, const T & v)

{

std: :hash<T> hasher;
seed "= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);

}

The magic number is supposed to be 32 “random” bits:
- each is equally likely to be 0 or 1
- with no simple correlation between the bits

A common way to find a pattern of such bits is to use the binary expansion of an
irrational number.

In this case, that number is the reciprocal of the golden ratio:

¢ = (1 + sqrt(5)) / 2
2"32 / ¢ = 0x9e3779b9

http://stackoverflow.com/guestions/35985960/c-why-is-boosthash-combine-the-best-way-to-combine-hash-values

http://stackoverflow.com/questions/35985960/c-why-is-boosthash-combine-the-best-way-to-combine-hash-values

FNV-1A

std::size t fnvla(void const * key, std::size t len)

{

std::size t h = 14695981039346656037u;

unsigned char const * p = static _cast<unsigned char const*>(key);
unsigned char const * const e = p + len;
for (; p < e; ++p)

h = (h " *p) * 1099511628211u;

return h;

The FNV hash was designed for fast hash-table and checksum use (not cryptography).

https://en.wikipedia.org/wiki/Fowler%E2%80%93Nol1%E2%80%93Vo_hash_function

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Hash with FNV-1A

class Customer

{

std::string firstName;
std::string lastName;

int age;

public:

/] ...
std::size_t hash_code() const
{

std::size t ki
std::size t k2
std::size_t k3

fnvla(firstName.data(), firstName.size());
fnvla(lastName.data(), lastName.size());
fnvla(&age, sizeof(age));

return hash_combine(kl, k2, k3); // what algorithm is this?

}
}s

Ok, but our algorithm is still “polluted” by the combine step...

Anatomy Of A Hash Function

1. Initialize internal state.
2. Consume bytes into internal state.

3. Finalize internal state to result type (usually size t).

Anatomy Of A Hash Function

std::size_ t fnvla(void const * key, std::size t len)

{
std::size t h = 14695981039346656037u; < initialize internal state

// consume bytes into internal state:
unsigned char const * p = static_cast<unsigned char const*>(key);
unsigned char const * const e = p + len;
for (; p < e; ++p)
h = (h ~ *p) * 1099511628211u;

return h; < finalize internal state to size_t

Repackaging this algorithm
to make the three stages separately accessible

class fnvla

{
std::size t h = 14695981039346656037u; & initialize internal state

public:

// consume bytes into internal state
void operator()(void const * key, std::size t len) noexcept

{

unsigned char const * p = static_cast<unsigned char const*>(key);
unsigned char const * const e = p + len;
for (; p < e; ++p)

h = (h ~ *p) * 1099511628211u;

}

explicit operator size_t() noexcept & finalize internal state to size_t

{

return h;

}
¥

class Customer

{
std::string firstName; :
std::string lastName; @ The_ same technique ce_an.be
int age; used with almost every existing
F’Ub’}lc‘ hashing algorithm.
std::size t hash_code() const
{
fnvla hasher;
hasher(firstName.data(), firstName.size());
hasher(lastName.data(), lastName.size());
hasher(&age, sizeof(age));
return static_cast<std::size_t>(hasher); // no more hash_combine() !!!
}
}s

Now we are using a “pure” FNV-1A algorithm
for the entire data structure.

Combining Types

class Sale

{ How do we use just FNV-1A for
Customer customer; the entire class?
Product product;

Date date;

public:
std::size t hash_code() const
{

std::size t hl = customer.hash_code();

std::size t h2 = product.hash_code();

std::size t h3 = date.hash_code();

return hash_combine(hl, h2, h3); // OMG, it’s back :(
}

}s

hash _append()

Proposal by:
Howard Hinnant, Vinnie Falco, John Bytheway

N3980 / 2014-05-24

hash_append()

class Customer

{
std::string firstName;
std::string lastName;
int age;
public:
/] ...
std::size t hash_code() const
{
fnvla hasher;
hasher(firstName.data(), firstName.size());
hasher(lastName.data(), lastName.size());
hasher(&age, sizeof(age));
return static _cast<std::size t>(hasher); //
}

¥

no more hash_combine() !!!

hash_append()

class Customer
{
std::string firstName;
std::string lastName;
int age;
public:
/] ...

friend void hash_append(fnvla & hasher, const Customer & c)

{

hasher(c.firstName.data(), c.firstName.size());
hasher(c.lastName.data(), c.lastName.size());
hasher(&c.age, sizeof(c.age));

}
}s

Let some other piece of code construct and finalize fnv1a.
Customer only appends to the state of fnv1a.

hash_append()

class Sale

{

Customer customer;
Product product;
Date date;

public:

friend void hash_append(fnvla & hasher,

{

hash_append(hasher, s.customer);
hash_append(hasher, s.product);
hash_append(hasher, s.date);

}
}s

Types can recursively build upon
one another’s hash_append() to
build up state in fnv1a object.

const Sale & s)

hash_append()

class Customer
{
std::string firstName;
std::string lastName;
int age;
public:
/] ...

friend void hash_append(fnvla & hasher, const Customer & c)

{

hash_append(hasher, c.firstName);
hash_append(hasher, c.lastName);
hash_append(hasher, c.age);

}
}s

Primitive and std-defined types can be given hash_append() overloads
=> simplified & uniform interface

hash_append() / Abstracting the algorithm

class Customer
{
std::string firstName;
std::string lastName;
int age;
public:
/] ...

template<class HashAlgorithm>
friend void hash_append(HashAlgorithm & hasher, const Customer & c)
{
hash_append(hasher, c.firstName);
hash_append(hasher, c.lastName);
hash_append(hasher, c.age);
}
¥

If all hash algorithms use a uniform interface, we can swap any
hasher into our data type.

hash_append() / Primitives

For primitive types that are contiguously hashable
we can just send their bytes to the hash algorithm in hash _append().

Eg.

template <class HashAlgorithm>
void hash_append(HashAlgorithm & hasher, int i)

{

hasher(&i, sizeof(i));

}

template <class HashAlgorithm, class T>
void hash_append(HashAlgorithm & hasher, T * p)

{
hasher(&p, sizeof(p));

}

hash_append()

A complicated class is ultimately made up of scalars located in
discontiguous memory.

hash_append() appends each byte to the HashAlgorithm state by
recursing down into the data structure to find the scalars.

Prerequisites:

e Every type has a hash_append() overload
e The overload will either call hash _append() on its bases and
members, or it will send bytes of its memory to the HashAlgorithm

e No type is aware of the concrete HashAlgorithm type.

How to use hash_append()

HashAlgorithm hasher;
hash_append(hasher, my_type);

return static_cast<size_ t>(hasher);

Wrap the whole thing up in a conforming hash functor

template <class HashAlgorithm>
struct GenericHash

{
using result type = typename HashAlgorithm::result type;

template <class T>
result_type operator()(const T & t) const noexcept

{
HashAlgorithm hasher;

hash_append(hasher, t);
return static cast<result type>(hasher);
}
}s

unordered_set<Customer, GenericHash<fnvla>> my set;

Change Hashing Algorithms

unordered set<Sale, GenericHash<fnvla>> my set;
unordered _set<Sale, GenericHash<SipHash>> my_ set;
unordered set<Sale, GenericHash<Spooky>> my set;
unordered set<Sale, GenericHash<Murmur>> my_set;

unordered set<Sale, GenericHash<CityHash>> my_set;

It becomes trivial to experiment with different hashing algorithms
to optimize performance, minimize collisions.

Opend4Tech Summer School 2021

So You Think You Can #

Building an app using Blockchain

A list< > of data structures you should add in your learning queue< >
Build a video call react app with WebRTC and Socket.io

Importance of good coding habits

Build cryptocurrencies exchange using React

Why we code

Getting a11y right

State of the Art Natural Language Processing for Noobs
Java Swing Crash Course

NETROM

28 iunie - 16 iulie 2021

http:/finf.ucv.rof~ summer-school/

DEPARTAMENTUL
DE INFORMATICA

Luni

Marti

Miercuri

Joi

Vineri

28 iunie

29 iunie

So You Think You Can #

So You Think You Can #

30 iunie

1 iulie

2 iulie

Building an app using

2-4pm (hashing algorithms & (hashing algorithms & N N :
containers) containers) o o 2 s b 5 - J Blockchain
Q d
4-6pm Why we code Why we code Getting ally right Java Swing Crash Course
5 iulie 6 iulie 7 iulie 8 iulie 9 iulie

2-4pm

Build a video call react Build a video call react

app with WebRTC and
Socket.io

app with WebRTC and
Socket.io

Build a video call react
app with WebRTC and
Socket.io

State of the Art
Natural Language
Processing for Noobs

State of the Art
Natural Language
Processing for Noobs

4-6pm
12 iulie 13 iulie 14 iulie 15 iulie 16 iulie
Build cryptocurrencies Build cryptocurrencies Code conventions: Code conventions:
2-4pm Importance of good Importance of good

exchange using React

exchange using React

coding habits

coding habits

4-6pm

a4

F— N CAPHYON
Part IIJ

So You Think You Can #

Hashing Algorithms and Containers

_ Victor Ciura
inf.ucv.ro/~summer-school Principal Engineer

Y @ciura_victor ‘
June 2021 y

http://inf.ucv.ro/~summer-school/

Recap from Part 1

hash
keys function buckets
00
01 | 521-8976
John Smith
02 | 521-1234
03
Lisa Smith _ :

13

Sandra Dee
- — | 521-9655

15

¢

L X 4

>

¢

L X 4

>

¢

L X 4

>

¢

L X 4

>

Determinism
Uniformity

Defined range

Hash Function Properties

Non-invertible

Anatomy Of A Hash Function

1. Initialize internal state.
2. Consume bytes into internal state.

3. Finalize internal state to result type (usually size t).

Repackaging this algorithm
to make the three stages separately accessible

class fnvla

{
std::size t h = 14695981039346656037u; & initialize internal state

public:

// consume bytes into internal state
void operator()(void const * key, std::size t len) noexcept

{

unsigned char const * p = static_cast<unsigned char const*>(key);
unsigned char const * const e = p + len;
for (; p < e; ++p)

h = (h ~ *p) * 1099511628211u;

}

explicit operator size_t() noexcept & finalize internal state to size_t

{

return h;

}
¥

hash_append()

class Customer
{
std::string firstName;
std::string lastName;
int age;
public:
/] ...

friend void hash_append(fnvla & hasher, const Customer & c)

{

hasher(c.firstName.data(), c.firstName.size());
hasher(c.lastName.data(), c.lastName.size());
hasher(&c.age, sizeof(c.age));

}
}s

Let some other piece of code construct and finalize fnv1a.
Customer only appends to the state of fnv1a.

hash_append()

class Sale

{

Customer customer;
Product product;
Date date;

public:

friend void hash_append(fnvla & hasher,

{

hash_append(hasher, s.customer);
hash_append(hasher, s.product);
hash_append(hasher, s.date);

}
}s

Types can recursively build upon
one another’s hash_append() to
build up state in fnv1a object.

const Sale & s)

Wrap the whole thing up in a conforming hash functor

template <class HashAlgorithm>
struct GenericHash

{
using result type = typename HashAlgorithm::result type;

template <class T>
result _type operator()(const T & t) const noexcept

{
HashAlgorithm hasher;

hash_append(hasher, t);
return static cast<result type>(hasher);
}
}s

std: :unordered set<Customer, GenericHash<fnvla>> my_ set;

Change Hashing Algorithms

unordered set<Sale, GenericHash<fnvla>> my set;
unordered _set<Sale, GenericHash<SipHash>> my_ set;
unordered set<Sale, GenericHash<Spooky>> my set;
unordered set<Sale, GenericHash<Murmur>> my_set;

unordered set<Sale, GenericHash<CityHash>> my_set;

It becomes trivial to experiment with different hashing algorithms
to optimize performance, minimize collisions.

std: :hash<Key>

Defined in header <functional>
std::size_ t h = std::hash<std::string>{}(firstName);

e Accepts a single parameter of type Key

e Returns a value of type size t that represents the hash value of the
parameter

e Does not throw exceptions when called

e If k1l and k2 are equal => std::hash<Key>()(kl) == std::hash<Key>()(k2)

e If k1 and k2 are different, the probability that std::hash<Key>()(kl) ==
std: :hash<Key>()(k2) should be very small, approaching

1.9/std::numeric_limits<size t>::max()

Standard specializations for basic types:

std: :hash<Key>

template< class T > struct hash<T*>;

template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>
template<>

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

hash<bool>;
hash<char>;
hash<signed char>;
hash<unsigned char>;
hash<charl6e_t>;
hash<char32_t>;
hash<wchar_t>;
hash<short>;
hash<unsigned short>;
hash<int>;
hash<unsigned int>;
hash<long>;

hash<long long>;
hash<unsigned long>;
hash<unsigned long long>;
hash<float>;
hash<double>;
hash<long double>;

Standard specializations for Library types:

std:
std:
std:
std:
std:

/...

:hash<std:
:hash<std:
:hash<std:
:hash<std:
:hash<std:

:string>
:wstring>
:unique_ptr>
:shared_ptr>
:bitset>

</Recap>

std: :hash<Key>

Standard specializations for library types:

std: :hash<std: :string>
std: :hash<std: :wstring>

std: :hash<std: :unique_ptr>
std: :hash<std: :shared _ptr>

std: :hash<std: :bitset>

/...

Exploring string hash tables
<code walk-through>

What we want:
“A hash table mapping string keys (case-insensitive) to some custom data type.”

Starting point:

template<
class Key,

class T,

class Hash
class KeyEqual
class Alloc

std: :hash<Key>,
std: :equal_to<Key>, < Why is this part of the interface? Why not Key::operator==()
std: :allocator< std::pair<const Key, T> >

>
class std::unordered_map;

What we need:

e A custom hash functor for case-insensitive strings
e A custom comparator functor, to compare strings ignoring character case

http://en.cppreference.com/w/cpp/utility/hash
http://en.cppreference.com/w/cpp/utility/functional/equal_to
http://en.cppreference.com/w/cpp/memory/allocator
http://en.cppreference.com/w/cpp/utility/pair

Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHash

{

}s

using HashedType = StringType;

size t operator()(const HashedType & aStr) const
{

std: :hash<HashedType> hasher; < we can use any hashing algorithm
return hasher(aStr);

}
bool operator()(const HashedType & aStrl, const HashedType & aStr2) const
{
return aStrl < aStr2;
}
struct KeyEquality
{
bool operator()(const HashedType & aStrl, const HashedType & aStr2) const
{
return aStrl == aStr2;
}
}s

Exploring string hash tables
<code walk-through>

typedef BasicStringHash<char> StringHash;
typedef BasicStringHash<wchar_t> StringHashW;

Eg.

std: :unordered_map<wstring, TYPE, StringHashW, StringHashW::KeyEquality>

Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHashI

{

}s

us

size t operator()(const HashedType & aStr) const

{

ing HashedType = StringType;

// make a lower-case copy of the input string
HashedType lowerStr(aStr);
ToLower(const_cast<Type *>(lowerStr.c str()));

std: :hash<HashedType> hasher;
return hasher(lowerStr);

Case-insensitive hashes

}

bool operator()(const HashedType & aStrl, const HashedType & aStr2) const
{ return CompareI(aStrl, aStr2) < 0;

}

//...

Exploring string hash tables
<code walk-through>

template <class Type, class StringType = std::basic_string<Type>>
struct BasicStringHashI

{
/... Case-insensitive hashes

struct KeyEquality

{
bool operator()(const HashedType & aStrl, const HashedType & aStr2) const

{
return CompareI(aStrl, aStr2) == 0;

}
}s
private:
static void ToLower(char * aStr) { ::CharLowerA(aStr); }

static void ToLower(wchar_t * aStr) { ::CharLowerW(aStr); }

static int CompareI(const string & aStrl, const string & aStr2)
{ return ::lstrcmpiA(aStrl.c_str(), asStr2.c_str()); }

static int CompareI(const wstring & aStrl, const wstring & aStr2)
{ return ::lstrcmpiW(aStrl.c_str(), aStr2.c_str()); }

}s

Exploring string hash tables
<code walk-through>

typedef BasicStringHashI<char> StringHashI;
typedef BasicStringHashI<wchar_t> StringHashWI;

Eg.

std: :unordered_map<wstring, TYPE, StringHashWI, StringHashWI::KeyEquality>

Case-insensitive hashes

Demo

Show me the codel

Research Topic for You

Optimal file-path (case-insensitive)

hash functor for std::unordered_map<>

opendtech@caphyon.com

FilePath Hasher

Special type of case-insensitive hash: file-paths hash map.

(a hasher for the string representation of file paths, in a case-insensitive file system)
What we want:

std: :unordered_map<FilePath, TYPE, FilePathHash, FilePathHash: :KeyEquality>
Where FilePath encapsulates a std::wstring plus file specific methods.

What issues do we have with regular StringHashWI for file paths ?

std: :unordered_map<FilePath, TYPE, StringHashWI, StringHashWI::KeyEquality>

FilePath Hasher

Requirements:

e The operations which have to be fast are insertions and searches

e Fast deletions would be desirable as well, but they are not a mandatory
requirement

e A tradeoff between faster search time and slower insert time is accepted (if a
faster search time can be achieved by slowing the insertion time a little bit)

e FilePathHash should be a drop-in replacement for StringHashWI (same API)

e Benchmarks for your FilePath hasher, having as baseline StringHashWI

N CAPHYQN

So You Think You Can #

Hashing Algorithms and Containers

_ Victor Ciura
inf.ucv.ro/~summer-school Principal Engineer

Y @ciura_victor ‘
June 2021 y

http://inf.ucv.ro/~summer-school/

