The Imperatives Must Go!

Meeting C++

November 2022

Victor Ciura
y @ciura victor Senior SW.Englneer N
Visual C++



https://twitter.com/ciura_victor

Abstract

Can a language whose official motto is “Avoid Success at All Costs” teach us new tricks in modern C++ ?

If Haskell is so great, why hasn't it taken over the world? My claim is that it has. But not as a Roman legion
loudly marching in a new territory, rather as distributed Trojan horses popping in at the gates, masquerading as
modern features or novel ideas in today’s mainstream languages. Functional Programming ideas that have
been around for over 40 years will be rediscovered to solve our current software complexity problems.

Indeed, modern C++ has become more functional. From mundane concepts like lambdas & closures,
std::function, values types and constants, to composability of STL algorithms, lazy ranges, folding, mapping or
even higher-order functions in STL. Did | mention Rust yet?

In this session we’ll analyze a bunch of FP technigues in C++ and see how they help make our code shorter,
clearer and faster, by embracing a declarative vs. an imperative style. We’ll visit the functional parts of current
STL, use algebraic data types (ADT) and learn about the new FP stuff coming in the next C++ standard, like
ranges or monadic extensions to std::future, std::optional and std::expected. Brace yourselves for a bumpy
ride including composition, lifting, currying, partial application, pure functions, maybe even pattern matching
and lazy evaluation.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



About me

Advanced Installer Clang Power Tools Visual C++

Y @ciura_victor

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor
https://visualstudio.microsoft.com

This Is meant as an introductory presentation to the
concepts to follow.

Depending on how this lands, sequels will cover some of
these topics in depth.

Don't worry, there are no cliffhangers...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



4 Hot take typing

If it looks like a hot take, if it feels like a hot take... it probably IS E

.."

| u“ﬁo Py "‘.\”a‘

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 4



k FP in 10

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Functional Programming

What ig it all about ?

Lop—
o o0

—

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



pipelines ranges optional I0 monad

algorithms .
Maybe | Just lifting monoids
lambdas & closures
loid . values types
lazy evaluation declarative vs imperative
monads . . algebraic data types
higher order functions
map
. composition
pattern matching FP
, expressions vs statements
pure functions
currying : . ae

recursion

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Paradox of Programming

Machine / Human impedance mismatch:

o Local / Global perspective
© Progress / Goal oriented

o Detall / Idea

© Vast / Limited memory

© Pretty reliable / Error prone

o Machine language / Mathematics / Logic

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://www.youtube.com/watch?v=JH_Ou17_zyU

Paradox of Programming

Machine / Human impedance mismatch:

o Local / Global perspective
© Progress / Goal oriented

o Detall / Idea

~ Vast / Limited memory

o Pretty reliable / Error prone

o Machine language / Mathematics / Logic

Is it easier to think like a machine than to do math?

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://www.youtube.com/watch?v=JH_Ou17_zyU

Semantics

~ The meaning of a program
~ Operational semantics: local, progress oriented

* Execute program on an abstract machine in your brain
~ Denotational semantics

* Translate program to math

~ Math: an ancient language developed for humans

A Crash Course in Category Theory - Bartosz Milewski https://www.youtube.com/watch?v=JH Oui17 zyU

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://www.youtube.com/watch?v=JH_Ou17_zyU

What is Functional Programming ?

* Functional programming is a style of programming in which the basic method of

computation is the application of functions to arguments

* A functional language is one that supports and encourages the functional style

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Let s address the m in the room...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Let s address the m in the room...

»eHaskell

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A functional language Is one that supports and
encourages the functional style

What do you mean 2

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Summing the integers 1 to 10 in C++/Java/C#

int total = 0;
for (int i = 1: 1 < 10: i++)
total = total + 1:

The computation method iIs variable assignment.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Functional Non-Functional

WHAI HOW

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A SOLID summary:

Michael Feathers
@mfeathers

OO0 makes code understandable by encapsulating moving
parts. FP makes code understandable by minimizing
moving parts.

3:27 PM - 3 Nov 2010
4+ 3 235 W 121

wikipedia.org/wiki/SOLID

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 16


https://en.wikipedia.org/wiki/SOLID

Historical Background

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background

Most of the “new" ideas and innovationg in modern
programming languages are actually very old...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1950s

John McCarthy develops Lisp, the first functional language, with some
Influences from the lambda calculus, but retaining variable assignments

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1960s

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1970s

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1970s

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1970-80s

David Turner develops a number of lazy functional languages,
culminating in the Miranda system

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1987

»=-Haskell

An advanced purely-functional programming language

An international committee starts the development of Haskell,
a standard lazy functional language

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background
1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Historical Background

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



CODE WURITTEN IN HASKELL

15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?

xked.com/1312/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 28


https://xkcd.com/1312/

Why (not) Haskell ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

My claim is that it has.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?

My claim is that it has.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

If Haskell is so great, why hasn't it taken over the world?
My claim is that it has.
But not as a Roman legion loudly marching in a new territory, rather as distributed

Trojan horses popping in at the gates, masquerading as modern features or novel
ideas In today’s mainstream languages.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Why (not) Haskell ?

Functional Programming ideas that have been around for over 40 years are
rediscovered to solve our current software complexity problems.

Indeed, contemporary C++ has become more functional.
From mundane concepts like lambdas & closures, std::function, values types and

constants, to composability of STL algorithms, lazy ranges, folding, mapping, partial
application (bind), higher-order functions or even monads such as optional, future...

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A laste of Haskell

f L] = [
f (X:xs) = f ys ++ [x] ++ f zs
where
ys = [a | a « xs, a £ x]
zs = |[b | b « xs, b > x]

What does T do ?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Quick Sort

gsort :: Ord a = [a] » [a]
gsort [] = [
gsort (xX:xs) =
gsort smaller ++ [x] ++ gsort larger

where
smaller = [a | a « xs, a £ x]
larger = [b | b « xs, b > x]

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Quick Sort

q 3,2,4,1,5]

!
q L2,1] ++ [3] ++ q [4,5]
! !
q 1] ++ [21 ++ g [1 q L1 ++ [4] ++ q [5]
! ! ! !
[1] n ] [5]

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Quick Sort

/* This function takes last element as pivot, places
the pivot element at 1ts correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right

void quickSort(Carr[], low, high) of pivot */
{ partition (arr[], low, high)
1f (low < high) {
{ // pivot (Element to be placed at right position)

/* pi is partitioning index, arr[pi] is now pivot = arrlhigh];

at right place */

: o : 1 = (low - 1) // Index of smaller element
p1 = partition(arr, low, high); ( )

for (J = low; jJ <= high- 1; Jj++)

quickSort(arr, low, p1 - 1); f
quickSort(arr, pi1 + 1, high); // If current element is smaller than or
} // equal to pivot
1 1f Carr[j] <= pivot)
WS O {
- 38 W o
- ikl 1++; // 1ncrement index of smaller element
o - swap arr[i] and arr[j]
\ 3
\ b Y
Y Y Y }
PR swap arr[1i 1] and arr[high
ALGORITHMS p arrli + 1] Lhighl)

pseudO_Code return C'I. + 1)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



True Story

1986:
Donald Knuth was asked to implement a program for the “Programming pearls” column in

the Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



True Story

1986:
Donald Knuth was asked to implement a program for the “Programming pearls” column in

the Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of

those words along with their frequencies.

His solution written in Pascal was 10 pages long.

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



True Story

Doug Mcliroy

wikipedia.org/wiki/Douglas Mcllroy

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 36


https://en.wikipedia.org/wiki/Douglas_McIlroy

True Story

Doug Mcliroy

His response was a 6-line shell script that did the same:

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}a

wikipedia.org/wiki/Douglas Mcllroy

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 36


https://en.wikipedia.org/wiki/Douglas_McIlroy

It's all about | pipelines

Taking inspiration from Doug Mcllroy's UNIX shell script,

write an algorithm in your favorite programming language,

that solves the same problem: word frequencies

!

L L L L L L L [ | | _§

B e e e IS
A ——

\ ———

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



How do I start on this journey?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Prerequisites

Category Theory
for Programmers

AA

~

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



The Book

CATEGORY THEORY

Bartosz Milewski
@BartoszMilewsKki

Bartosz Milewski

github.com/hmemcpy/milewski-ctfp-pdf

— T3 ) - ;q' T
J .'J o : ,.lf..{..r{r.. 71

Ty T
PE A0t AR
A i ! J ’y AT AN LN &
i) L r 174 /. i vBL ) ,
g '/ Al‘.‘%‘ <' L {

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://github.com/hmemcpy/milewski-ctfp-pdf

2022 Victor Ciura

rm .{’;;!““52

@ciura_victor - The Imperatives Must Go!

twitter.com/tvaneerd/status/1387

41


https://twitter.com/tvaneerd/status/1387631977373765632?s=20&t=PPc9s1KKudr36Os1MIR9nw

The Book

s }})'S‘a‘itf;:(.\ |

. ~"_\
T e

Q" -
-I,A) . vl

Functional Programming in

How to improve your
C++ programs using
functional techniques

lvan Cukié =
@ivan_cukic -

lvan Cukic .

amazon.com/Functional-Programming-programs-functional-techniques

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

Need a |ift?

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a |ift?

Higher-Order Functions

boost: :hof

boost.org/doc/libs/develop/libs/hof/doc/htmi/doc/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 44


https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

Need a lift?

A C++17 library of simple constexpr higher order functions of predicates
and for making functional composition easier.

These help reduce code duplication and improve clarity, for example in
code using STL <algorithm>

github.com/rollbear/lift

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!


https://github.com/rollbear/lift

Need a lift?

Higher order functions

o equal ~ compose

-~ not_equal ~when_all

- less_than ~when_any

~ less_equal ~when_none

o greater_than -1t then

o greater_equal o 1f_then _else
~ negate ~do_all

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a lift?

struct Employee {
std::string name;
unsigned number;

b

const std::string& select_name(const Employee& e) { return e.name; }
unsigned select_number(const Employee& e) { return e.number; }

std::vector<Employee> staff;

// sort employees by name
std::sort(staff.begin(), staff.end(),
lift::compose(std::less<>{}, select _name));

// retire employee number 5

auto i = std::find_if(staff.begin(), staff.end(),
lift::compose(lift::equal(5), select_number));

if (i !'= staff.end()) staff.erase(i);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a lift?

If you're using C++20 ranges you can get this (and more).

Projections... Oh my!

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a lift?

Lifts overloaded functions named 'X' to one callable that can be used
with other higher order functions.

#define LIFT THRICE(...) \
noexcept (noexcept(__VA_ARGS__)) \
—> decltype(__VA_ARGS_ ) \
{ \
return VA ARGS ; \
}

#define LIFT_FWD(x) std::forward<decltype(x)>(x)

#define LIFT(1lift_func) [](auto&& ... p)
LIFT _THRICE(lift_func(LIFT_FWD(p)...))

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a lift?

Lifts overloaded functions named 'X' to one callable that can be used
with other higher order functions.

std::vector<int> vi;

:

std::vector<std::string> vs;

std::transform(std::begin(vi), std::end(vi),
std::back inserter(vs),
LIFT(std::to _string)); //lift overloaded set of 9 functions

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Need a lift?

Meeting C++ 2018

Bjorn Fahller

Higher Order Functions
for Ordinary C++

Bjérn Fahller Developers

Higher Order Functions for Ordinary C++ Developers

compose([](auto const& s) { return s = "foo";},
std::mem fn(&foo::name))

IHigher Order Functions — Meeting C++ 2018 © Bjérn Fahller , @bjorn_fahller

P> Pl ) o014/5228 B & & O-LJ :'::

Higher Order Functions for ordinary developers - Bjérn Fahller - Meeting C++ 2018 youtube.com/watch?v=glL6zUn7iiLg

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 51


https://www.youtube.com/watch?v=qL6zUn7iiLg

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Type Constructors

There are various ways to hide @ a value:

o unique_ptr<T> p;
o shared_ptr<T> p;
o vector<I> v;

o optional<T> o;

o function<T(int)> f:

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!

Access the value within:

</

</

</

</

xp| p.get()

xp| p.get()

v[0@] | xv.begin()
x0| o.value()
f(5)



Functor | Applicative | Monad

Performing actions on the hidden value, without breaking the & BOX.

adit.io/posts/2013-04-17-functors, applicatives, and monads in pictures

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 54


https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

% The Box

std::optional can simplify APIs

~ don't look inside the @ box

- don't use optional for error handling
-~ when in doubt, draw inspiration from other APIs:

Haskell (Maybe) or Rust (Option<T>)

adit.io/posts/2013-04-17-functors, applicatives, and monads in pictures

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 55


https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

% The Box

>

4+, Olafur Waage
@olafurw

Why can't you give a Rustacian a christmas present?

They unwrap everything right away.
1:26 PM - Nov 14, 2022 - TweetDeck

-
T T ————— - . RS S — . . o PN

doc.rust-lang.org/rust-by-example/error/option unwrap

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 560


https://doc.rust-lang.org/rust-by-example/error/option_unwrap.html

optional<T> f()

1T / else

optional<T> g(optional<T> 1in)

1T / else

optional<T> h(optional<T> 1in)

® don't look inside the @ box

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



adit.io/posts/2013-04-17-functors, applicatives, and monads in pictures

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 58


https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

Example

Calling the a function on the std: : string value inside the std: :optional box.

string capitalize(string str);

optional<string> str = ...; // from an operation that could fail

string cap;
if (str)
cap = capitalize(str.value()); // capitalize(xstr);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!




Example

Calling the a function on the std: : string value inside the std: :optional box.

string capitalize(string str);

optional<string> str = ...; // from an operation that could fail

optional<string> cap;
if (str)

cap = capitalize(str.value()); // capitalize(xstr);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!




Lifting capitalize()

Lifted capitalize() operates on optional<string> and produces optional<string>

optional<string> liftedCapitalize(const optional<string> & s)

{

optional<string> result;
if (s)
result = capitalize(xs);

return result;

}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Lifting capitalize()

liftedCapitalize()

std: :optional<string> std: :optional<string>

capitalize()

std: :string std: :string

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Lifting any function

Lifted T operates on optional<A> and produces optional<B>

template<class A, class B>
optional<B> fmap(function<B(A)> f, const optional<A> & 0)

{

optional<B> result;
if (o)
result = f(xo0); // wrap a <B>

return result:

}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Lifting any function

Llifted f

std: :optional<A> std: :optional<B>

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Composition of lifted functions

The real power of lifted functions shines when composing functions.

optional<string> str{" Some text "};

auto len = fmap<string, int>(&length,
fmap<string, string>(&trim, str));

liftedTrim L1ftedlLength

std: :optional<string> std: :optional<string> std: :optional<int>

std: :string std: :string

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Lifting any function (take 2)

template<typename T, typename F>

auto fmap(const optional<T> & o, F f) —> decltype( f(o.value()) )

{
if (o)
return f(o.value()):
else

return {}; // std::nullopt

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Composition Example

Let’s build a symbol table for a debugged program.

optional<int64_t> current_pc = ... ; // function address

optional<string> debug_location()

{

if ('current_pc)
return {};

const auto function = dsym::load _symbol(current_pc.value());
if (!'function)
return {};

return dsym::to_string(function.value()); // function name

}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Composition Example (take 2)

Let’s build a symbol table for a debugged program.

optional<int64_t> current_pc = ... ; // function address

optional<string> debug_location()

{
return fmap(
fmap(current_pc, dsym::load _symbol),
dsym::to_string
) ;
}

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Composition Example (take 3)

We could create an fmap transformation that has the pipe | syntax, like ranges:

optional<int64_t> current_pc = ... ; // function address

optional<string> debug_location()
{

return current_pcC
| fmap(dsym::load_symbol)
| fmap(dsym::to_string);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!




Lifting a function to a vector

Lifted T operates on vector<A> and produces vector<B>

template<class A, class B>
vector<B> fmap(function<B(A)> f, vector<A> v)

{

vector<B> result;

higher-order function

std::transform(v.begin(), v.end(), back_inserter(result), f);
return result;

}

lifted f

std: :vector<A> std: :vector<B>

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Lifting a function to a vector

Lifted Length operates on vector<string> and produces vector<int>

vector<string> names{ ... };

vector<int> lengths = fmap<string, int>(&length, names);

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Functor (recap)

Type constructor
~ create a box type that wraps another type
- encapsulates the values of another type into a context

Function lifting
~ create a higher-order function (eg. Tmap)
~ for any function A—>B create a function box<A> —> box<B>

Why?
~ no need to break encapsulation (no peek in &)

© better composition (chaining, continuation)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



% The Box

Monadic std: :optional (C++23 P0798)

optional<int> string_view_to_int(string_view sv)
1
const auto first
const auto last

sv.data():
first + sv.size():

int val = -1;
const auto result = std::from chars(first, last, val);

if (result.ec == errc{} && result.ptr == last)
return val;

else
return nullopt;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



% The Box

Monadic std: :optional (C++23 P0798)

| RSN e e e

cout << string_view _to_int(sv)
.and_then([=](int val) —> optional<int> {

const int logs = clamp(val, @, max_logs);

if (logs > 0)
return logs;

else
return std::nullopt;

)

.transform([] (int val) {
return std::format("Collecting in {} logs.", val);
)

.or_else([] {
return optional<string>{"Log error"};
)

.value()

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Declarative style
2018

C++ Nnow MAY 7-11

Cppnow.org

REPLACING CONDITIONALS

Style Signature Element | Elimination Strategy

Imperative Statement multi-computation

Object-Oriented | Object construction | polymorphism

Functional Function call higher order function

Generic Type instantiation traits class

Ben Deane

Easy to Use The Conditional-Replacement Meta-Pattern.

Hard to Misuse
Declarative Style in C++

outube.com/watch?v=2o0uxETt75R4



https://www.youtube.com/watch?v=2ouxETt75R4

Values

cxpressions yield values, Statements do not;

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Related session

Safety, Regularity, Independence, Projection, and the Future of Programming
15:15 - 16:15 Wednesday 14th September 2022 MDT Summit 2 & 3 / Online D

Beginner ’ Intermediate ’ — g E

+ Add to Schedule

Support for first-class user-defined value types may be among C++'s greatest strengths—one that most recent language designs have sadly failed
to emulate. That said, although value types are everywhere in C++, we don't have a commonly accepted definition of “value semantics”, and we
tend to use the phrase with only an intuitive idea of what it means. This talk offers a deeper understanding of value semantics, defining it in a way
that in turn reveals surprising truths about programming in general. We'll expose the value semantics that underlies our mental model even when
we're “forced” to use pointers or references, and discuss how a future C++ might close that expressivity gap, improving safety, performance, and
programmer confidence. We'll conclude with some guidelines you can use today to improve your programs, and propose the next must-see session
for value semantics lovers.

This presentation lays groundwork for another talk, “Val wants to be your friend.” If you're interested in that talk, you'll want to see this one first.

Dave Abrahams

Principal Scientist
Adobe

AAw
ame ,
A\ /4

Dave Abrahams is a founding contributor of the Boost C++ Libraries project and the founder of the first
annual C++ conference, BoostCon/C++Now. He is a contributor to the C++ standard, and was a principal
designer of the Swift programming language. He recently spent seven years at Apple, culminating in the
creation of the declarative SwiftUl framework, worked at Google on the Swift for TensorFlow project and,
briefly, on the Carbon language, and is now a principal scientist at Adobe's Software Technology Lab.

cppcon.digital-medium.co.uk/session/2022/values/

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! V&4


https://cppcon.digital-medium.co.uk/session/2022/values/

Values
cppcon | 2018

THE C++ CONFERENCE » BELLEVUE, WASHINGTON

value semantics

JUAN PEDRO
BOLIVAR PUENTE

The Most
Valuable Values

P Pl o) 1:21/585 B Seo{=Pn©lo I

CppCon 2018: Juan Pedro Bolivar Puente “The Most Valuable Values”
ppCon uan Pedro Bolivar Puente “The Most Valuable Values outube. com/watch?v— oBx NbL



https://www.youtube.com/watch?v=_oBx_NbLghY

Most valuable Values

Value-oriented design reconciles functional and procedural programming by
focusing on value semantics.

Like functional programming, it promotes local reasoning and composition.

It is however pragmatic and can be implemented in idiomatic C++,
IN existing codebases.

Juan Pedro Bolivar Puente

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! /9



Values

Juan Pedro Bolivar Puente

Squaring the circle: valu~ =~iented design
in an object-oriented sy: *

) 0:00/1:29:28

Value-oriented design in an object-oriented system - Juan Pedro Bolivar Puente [ C++ on Sea 2020 ]
outube.com/watch?v=SAMR5GJ GagA

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go! 30


https://www.youtube.com/watch?v=SAMR5GJ_GqA

Immutable DS
cppcon | 2017

THE C++ CONFERENCE * BELLEVUE, WASHINGTON

SEARCH

\ v[17] - 01 00 01

v
| JUAN PEDRO BOLIVAR PUENTE
ajblcjdfelfle{h]i nnjo]p

Postmodern immutable
data structures

P P| o) 000/1:0559 @B Sof=eio

CppCon 2017
CppCon 2017: Juan Pedro Bolivar Puente “Postmodern immutable data structures” outube.com/watch?v=sPh



https://www.youtube.com/watch?v=sPhpelUfu8Q

All the ra(n)ge...

C++ 20 Ranges

The beginning of the end for [begin, end)

Jeff Garland

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Ranges

Adaptors
New algorithms
Ranges Pipelines
Views
Actions :
Lazy evaluation
Projections

Very efficient generated code

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A taste of ranges

Print only the even elements of a range in reverse order:

std: : for_each(
crbegin(v), crend(v),
[ ]Cauto const 1)
{

for (auto const 1 : v
| reverse
| filter(1is_even))

1f(1s_even(1)) t

. cout << 1;
cout << 1;

1)

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A taste of ranges

Skip the first 2 elements of the range and print only the even numbers of the next 3 in the range:

auto 1t = cbegin(v);

std: :advance(1t, 2); for (auto const 1 : v
auto 1x = 0; | drop(2)
while (1t !'= cend(v) && 1x++ < 3) | take(3)
{ | filter(is_even))
1f (1s_even(*1t)) {
cout << (*1t); cout << 1;
1t++; }
$

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A taste of ranges

Modify an unsorted range so that it retains only the unique values but in reverse order.

vector<int> v{ 21, 1, 3, &8, 13, 1, 5, 2 };
vector<int> v{ 21, 1, 3, 8, 13,

std: :sort(begin(v), end(v)); 1, 5, 2 };
v.erase( v = std::move(v)
std: :unique(begin(v), end(v)), | sort
end(Vv)); | unique
| reverse;

std: :reverse(begin(v), end(v));

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A taste of ranges

Create a range of strings containing the last 3 numbers divisible to 7 in the range [101, 200],
IN reverse order.

vector<string> v;

for (int n = 200, count = 0; auto v = 1ota_view(101l, 201)
n >= 101 && count < 3; --n) reverse
{ .
| filter([JCauto v) { return v¥%7==0; })
0 e
?C (n% 7 ==10) transform(to_string)
. . take(3)
v.push_back(to_string(n)); .
counts: to<vector>();
$

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



A taste of ranges

C++20 ranges ruined one more interview question &

auto strings = std::string_view{"Hello C++ 20"}

| std::views::split(' ');

a range of ranges

for (const auto & ref : strings)
std::cout << std::string_view{ref.begin(), ref.end()} << '\n';

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



It's all about | pipelines

Taking inspiration from Doug Mcllroy's UNIX shell script:

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}g

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Word frequencies

const auto words =
Lhput_range<string>(std::cin)
| view: :transform(string_to_lower)
view: :transform(string_only_alnum)
view: :remove_1f(&string: :empty)
ranges: :sort
ranges: :to<vector>();

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Word frequencies

const auto results = words

| view: :group_by(equal_to())

| view: :transform([] (const auto & grp) {
const auto size = distance(begin(grp), end(grp));
const string word = *begin(grp);
return make_pair(size, word);

5)
| ranges: :sort
| ranges: :to<vector>();

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Word frequencies

for (auto value : results | view::reverse
| view: :take(n))
{

cout << value.first <<

¥

<< value.second << "\n";

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Gotchas with ranges

C++20 ranges library is fantastic tool, but watch out for gotchas /!

~ views have reference semantics => all the reference gotchas apply
- as always with C++, const is shallow and doesn't propagate (as you might
expect)
~ some functions do caching, eg. .begin(), .empty() | filter | drop
-~ don't hold on to views or try to reuse them
- safest to use them ad-hoc, as temporaries

~ If needed, better "copy" them (cheap) for reuse

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Remember him?
1990s

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



[akeaway <

<x> Cukié

"Make your code readable.

Pretend the next person who looks
at your code is a psychopath and
they know where you live."

Phil Wadler

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



The Imperatives Must Go!

Meeting C++

November 2022

Victor Ciura
y @ciura victor Senior SW.Englneer N
Visual C++



https://twitter.com/ciura_victor

Bonus problem

2022 Victor Ciura | @ciura_victor - The Imperatives Must Go!



Counting adjacent repeated values in a sequence.

How many of you solved this textbook exercise before ?
(in any programming language)




Counting adjacent repeated values in a sequence

15,8,38,2,1,1,9, 4,4, 7}



Counting adjacent repeated values in a sequence

Visual hint:

{ 5, 8, 8, Z? 1? 1, 9? 4) 4) 7 }



Counting adjacent repeated values in a sequence

Visual hint:

{ 5, 8, 8, Z? 1? 1, 9? 4) 4) 7 }

{ 5, 8, 8, Z? 1? 1? 9? 4) 4) 7 }



Counting adjacent repeated values in a sequence

Visual hint:

{ 5, 8, 8, Z? 1? 1, 9? 4) 4) 7 }

{ 5, 8) 8, Z? 1? 1? 9? 4) 4) 7 }



Counting adjacent repeated values in a sequence

Visual hint:

{ 5, 8, 8, Z? 1? 1, 9? 4) 4) }

{ 8) 8, Z? 1? 1? 9? 4) 4) 7 }




Counting adjacent repeated values in a sequence

Visual hint:

1

) 1?

:

)

| 3

) ) ) ) ) )

SEERRAL

) ) ) ) ) ) )




Counting adjacent repeated values in a sequence

Visual hint:

1




Counting adjacent repeated values in a sequence

Visual hint:




Counting adjacent repeated values in a sequence

Visual hint:

{ ®) 1) ®) Q, 1, ®) Q) 1) @ }



Counting adjacent repeated values in a sequence

Visual hint:

(+) 8 3

{ ®) 1) ®) Q, 1, ®) Q) 1) @ }



C++ Counting adjacent repeated values in a sequence

Let me guess... a bunch of for loops, right ?



C++ Counting adjacent repeated values in a sequence

Let me guess... a bunch of for loops, right ?

How about something shorter ?

An STL algorithm maybe ?



C++ Counting adjacent repeated values in a sequence

template<class InputlItl, class Inputlt’Z,

class T,
class BinaryOperationl, class BinaryOperationZ>

T inner_product(InputItl firstl, InputItl lastl,
Inputlt?2 firstZ2, T 1nit,

BinaryOperationl opl // "sum" function
BinaryOperation2 op2) // "product"” function

1
while (firstl != lastl)
1
init = opl(init, opZ2(*firstl, *first?2));
++firstl;
++f1rst’Z;
5

return init;
} https://en.cppreference.com/w/cpp/algorithm/inner product



https://en.cppreference.com/w/cpp/algorithm/inner_product

C++ Counting adjacent repeated values in a sequence

template <typename T>
1ht count_adj_equals(const T & XS) // requires non-empty range

1

return std::1nner_product(

std: :cbegin(xs), std::cend(xs) - 1, // to penultimate elem

std::cbegin(xs) + 1, // collection tail
0

std: :plus{},
std: :equal_to{}); // yields boolean => 0 or 1



C++ Counting adjacent repeated values in a sequence

’ If you found that piece of code in a code-base,
‘ would you understand what it does™ ?

* without my cool diagram & animation



Counting adjacent repeated values in a sequence

Let's go back to Haskell for a few minutes...

S




)k Counting adjacent repeated values in a sequence

Visual hint:

[ 5, 8: 8: Z: 1? 1’ 9’ 4’ 4’ / ]



)k Counting adjacent repeated values in a sequence

Visual hint:

[ 5, 8: 8: Z: 1? 1’ 9’ 4’ 4’ / ]

[ 5, 8) 8, Z) 1? 1? 9? 4’ 4’ ( ]



)k Counting adjacent repeated values in a sequence

Visual hint:

[ 5, 8: 8: Z: 1? 1’ 9’ 4’ 4’ / ]

[5,8,8,2,1,1,09, 4, 4, 7]



)k Counting adjacent repeated values in a sequence

Visual hint:

[ 5, 8,8, 2, 1,1, 9, 4, 4, ]

[ 8, 8, Z, 1, 1, 9) 4? 4?7]




)k Counting adjacent repeated values in a sequence

Visual hint:

I

) 1?

:

)

| |

) ) ) ) ) )

SEEREEES

) ) ) ) ) ) )




)k Counting adjacent repeated values in a sequence

Visual hint:

L 5,

|




)k Counting adjacent repeated values in a sequence

Visual hint:

L 5,

|




)k Counting adjacent repeated values in a sequence

Visual hint:

[ _3: ®9 69 13 ®: _8: 5) Q: -3 ]



)k Counting adjacent repeated values in a sequence

Visual hint:

[ _3: ®9 69 13 ®: _8: 5) Q: -3 :l (==®> & 3



)k Counting adjacent repeated values in a sequence

let xs =[5, 8, 8, 2, 1, 1, 9, 4, 4, 7 ]
count_1f f = length . filter f

adj_diff = mapAdjacent (-)

count_adj_equals = count_if (==0) . adj_diff

> count_adj_equals xs
3

That's it !



)k Counting adjacent repeated values in a sequence

Let's break it down:

// C++ // Haskell

[ ]Cauto a, auto b) { return a + b; } (\ab ->a + b)

plusd} (+)

[ ]Cauto e) ->bool { return e == 1; } (\e > e ==1)
(==1)

Lambdas & sections



)k Counting adjacent repeated values in a sequence

Let's break it down:

length::[a] -> Int
filter::(a->Bool) -> [a] -> [a]

=>

count_1if::(a->Bool) -> [a] -> Int
count_1f f = length . filter f



)k Counting adjacent repeated values in a sequence

Let's break it down:

mapAdjacent::(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)



)k Counting adjacent repeated values in a sequence

Let's break it down:

mapAdjacent::(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

(-)::a ->a -> a
adj_diff = mapAdjacent (-)

=>

adj_diff::[a] -> |a]



)k Counting adjacent repeated values in a sequence

Let's break it down:

(==0)::a -> Bool
count_1if::(a->Bool) -> [a] -> Int
adj_diff::[a] -> [a]

count_adj_equals::[a] -> Int
count_adj_equals = count_if (==0) . adj_diff



)k Counting adjacent repeated values in a sequence

Let's break it down:

>
L -
> count_1f(==0) ds
3



)k Counting adjacent repeated values in a sequence

The algorithm

count_1f f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff



C++ Counting adjacent repeated values in a sequence

Back to modern C++



C++ Counting adjacent repeated values in a sequence

Back to modern C++

template <typename T>
1nt count_adj_equals(const T & xs)

1

return accumulate(,
z1p(xs, tail(xs)) | transform(equal_to{}));



C++ Counting adjacent repeated values in a sequence

Back to modern C++

template <typename T>
1nt count_adj_equals(const T & xs)

1

return accumulate(,
z1p(xs, tail(xs)) | transform(equal_to{}));

Ranges F'T'W



