
@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

Casting Out Code Goblins:
ASan's 🎃Halloween Guard

October 31 👻
2023

https://twitter.com/ciura_victor

Let's see how AddressSanitizer works behind the scenes (compiler and ASAN runtime) and analyze
the instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples
diagnosed by ASAN and see how easy it is to read memory snapshots to pinpoint the failure.

In the code where the digital goblins play,
And memory monsters lurk, ready to sway,
ASan's the wizard, with spells so neat,
Banishing bugs, making errors retreat.

Pumpkins glow, and the night's full of haze,
But with ASan, no app goes astray.
Witches and warlocks might cackle and scheme,
But ASan ensures a software dream.

On All Hallows’ Eve, when codes might feel eerie,
With ASan on watch, we’re never weary.
For amidst the spook, and the bytes’ haunted fun,
ASan’s the shield, making dangers undone!

Casting Out Code Goblins: ASan's 🎃Halloween Guard

Let's see how AddressSanitizer works behind the scenes (compiler and ASAN runtime) and analyze
the instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples
diagnosed by ASAN and see how easy it is to read memory snapshots to pinpoint the failure.

In the code where the digital goblins play,
And memory monsters lurk, ready to sway,
ASan's the wizard, with spells so neat,
Banishing bugs, making errors retreat.

Pumpkins glow, and the night's full of haze,
But with ASan, no app goes astray.
Witches and warlocks might cackle and scheme,
But ASan ensures a software dream.

On All Hallows’ Eve, when codes might feel eerie,
With ASan on watch, we’re never weary.
For amidst the spook, and the bytes’ haunted fun,
ASan’s the shield, making dangers undone!

Casting Out Code Goblins: ASan's 🎃Halloween Guard

32023 Victor Ciura | @ciura_victor - ASan All The Things

2021 CWE Top 25

Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

42023 Victor Ciura | @ciura_victor - ASan All The Things

Common Vulnerabilities and Exposures
Memory safety continues to dominate

52023 Victor Ciura | @ciura_victor - ASan All The Things

Opportunistic

exploits 😈

ROP - return oriented programming

DOP - data oriented programming

BOP - block oriented programming

DDM - direct memory manipulation

➡ they all exploit memory safety errors

62023 Victor Ciura | @ciura_victor - ASan All The Things

C++ developers

72023 Victor Ciura | @ciura_victor - ASan All The Things

C++ developers

72023 Victor Ciura | @ciura_victor - ASan All The Things

C++ developers

82023 Victor Ciura | @ciura_victor - ASan All The Things

C++ Security Technologies

Delivering safe C++ requires:

static analysis (compile-time)

dynamic analysis (runtime)

code hardening (secure codegen)

92023 Victor Ciura | @ciura_victor - ASan All The Things

Static vs Dynamic

Analysis

Quick primer

102023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

pointer aliasing makes it hard to prove things (alias analysis is hard problem)

Static Analysis

102023 Victor Ciura | @ciura_victor - ASan All The Things

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

pointer aliasing makes it hard to prove things (alias analysis is hard problem)

vicious cycle: type propagation <> alias analysis

Static Analysis

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

112023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

the biggest impact when combined with fuzzing

112023 Victor Ciura | @ciura_victor - ASan All The Things

0 false positives!

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

the biggest impact when combined with fuzzing

122023 Victor Ciura | @ciura_victor - ASan All The Things

Sanitizers

132023 Victor Ciura | @ciura_victor - ASan All The Things

Sanitizers

AddressSanitizer - detects addressability issues

LeakSanitizer - detects memory leaks

ThreadSanitizer - detects data races and deadlocks

MemorySanitizer - detects use of uninitialized memory

HWASAN - hardware-assisted AddressSanitizer (consumes less memory)

UBSan - detects Undefined Behavior
github.com/google/sanitizers

https://github.com/google/sanitizers

142023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

github.com/google/sanitizers/wiki/AddressSanitizer

De-facto standard for detecting memory safety issues

It’s important for basic code correctness and true vulnerabilities

https://github.com/google/sanitizers/wiki/AddressSanitizer

152023 Victor Ciura | @ciura_victor - ASan All The Things

"Why did the programmer use ASan?"

152023 Victor Ciura | @ciura_victor - ASan All The Things

"Why did the programmer use ASan?"
"To address all the bugs!" 😄

152023 Victor Ciura | @ciura_victor - ASan All The Things

"Why did the programmer use ASan?"

-- credit ChatGPT4

"To address all the bugs!" 😄

162023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

Detects:

Use after free (dangling pointer dereference)

Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope

Initialization order bugs

Memory leaks
github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

172023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

Started in LLVM by a team @ Google

and quickly took off as a de facto industry standard

for runtime program analysis

github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

182023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

LLVM starting with version 3.1 (2012)

GCC starting with version 4.8 (2013)

MSVC starting with VS 16.4 (2019)

http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com

192023 Victor Ciura | @ciura_victor - ASan All The Things

stack-use-after-scope
stack-buffer-overflow
stack-buffer-underflow
heap-buffer-overflow (no underflow)
heap-use-after-free
calloc-overflow
dynamic-stack-buffer-overflow (alloca)
global-overflow (C++ source code)
new-delete-type-mismatch

docs.microsoft.com/en-us/cpp/sanitizers/asan

memcpy-param-overlap
allocation-size-too-big
invalid-aligned-alloc-alignment
use-after-poison
intra-object-overflow
initialization-order-fiasco
double-free
alloc-dealloc-mismatch

ASan features:

https://docs.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-160

202023 Victor Ciura | @ciura_victor - ASan All The Things

global ‘C’ variables  
(in C a global can be declared many times, and each declaration can be of a different type and size)

__declspec(no_sanitize_address)  
(opt-out of instrumenting entire functions or specific variables)

automatically link appropriate ASan libs  
(eg. when building from command-line with /fsanitize:address)

use-after-return (opt-in)  
(requires code gen that utilizes two stack frames for each function)

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

expanded RtlAllocateHeap support

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

expanded RtlAllocateHeap support

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

 ASAN_OPTIONS=windows_hook_legacy_allocators=true

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

expanded RtlAllocateHeap support

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

 ASAN_OPTIONS=windows_hook_legacy_allocators=true

explicit error messages for shadow memory interleaving and interception failure

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

expanded RtlAllocateHeap support

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

 ASAN_OPTIONS=windows_hook_legacy_allocators=true

explicit error messages for shadow memory interleaving and interception failure

IDE integration can now handle the complete collection of exceptions which ASan can report

ASan features:

212023 Victor Ciura | @ciura_victor - ASan All The Things

expanded RtlAllocateHeap support

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

 ASAN_OPTIONS=windows_hook_legacy_allocators=true

explicit error messages for shadow memory interleaving and interception failure

IDE integration can now handle the complete collection of exceptions which ASan can report

compiler/linker will suggest emitting debug information when building with ASan

ASan features:

222023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

232023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

IDE Exception Helper will be displayed when an issue is encountered
=> program execution will stop

ASan logging information => Output window

242023 Victor Ciura | @ciura_victor - ASan All The Things

==27748==ERROR: AddressSanitizer: stack-use-after-scope on address 0x0055fc68 at pc 0x793d62de bp 0x0055fbf4 sp 0x0055fbe8
WRITE of size 80 at 0x0055fc68 thread T0
 #0 0x793d62f6 in __asan_wrap_memset d:_work\5\s\llvm\projects\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764
 #1 0x77dd46e7 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c46e7)
 #2 0x77dd4ce1 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c4ce1)
 #3 0x75d408fe (C:\WINDOWS\System32\KERNELBASE.dll+0x100f08fe)
 #4 0xa5ada0 in try_get_first_available_module minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:271
 #5 0xa5ae99 in try_get_function minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:326
 #6 0xa5b028 in __acrt_AppPolicyGetProcessTerminationMethodInternal minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:737
 #7 0xa606ad in __acrt_get_process_end_policy minkernel\crts\ucrt\src\appcrt\internal\win_policies.cpp:84
 #8 0xa52dcb in exit_or_terminate_process minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:134
 #9 0xa52da7 in common_exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:280
 #10 0xa52fb6 in exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:293
 #11 0xa2deb3 in _scrt_common_main_seh d:\agent_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:295
 #12 0x75ef6358 (C:\WINDOWS\System32\KERNEL32.DLL+0x6b816358)
 #13 0x77df7a93 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e7a93)

Address 0x0055fc68 is located in stack of thread T0
SUMMARY: AddressSanitizer: stack-use-after-scope d:\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764 in __asan_wrap_memset
Shadow bytes around the buggy address:
 0x300abf30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x300abf70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x300abf80: 00 00 00 00 00 00 00 00 00 00 00 00 00[f8]00 00
 0x300abf90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x300abfd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb
 Shadow gap: cc
==27748==ABORTING

LLVM

252023 Victor Ciura | @ciura_victor - ASan All The Things

Snapshot File
Minidump file (*.dmp) <= Windows snapshot process (program virtual memory/heap + metadata)

VS can parse & open this => Points at the location the error occurred.

Changes the way you report a bug, in general

➡

262023 Victor Ciura | @ciura_victor - ASan All The Things

Snapshot
Loaded

272023 Victor Ciura | @ciura_victor - ASan All The Things

How does it work ?

282023 Victor Ciura | @ciura_victor - ASan All The Things

ASan is just Malware,
used for Good 😈

292023 Victor Ciura | @ciura_victor - ASan All The Things

Compiler

 instrumentation code, stack layout, and calls into runtime

 meta-data in OBJ for the runtime

Sanitizer Runtime

 hooking malloc(), memset(), memcpy(), strncpy(), RtlAllocate(), ...

 error analysis and reporting

 does not require complete recompile => great for interop

 zero false positives

Address Sanitizer (ASan)

302023 Victor Ciura | @ciura_victor - ASan All The Things

🪝

312023 Victor Ciura | @ciura_victor - ASan All The Things

==23364==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x12ac01b801d0 at
pc 0x7ff6e3a627be bp 0x0097d4b4fac0 sp 0x0097d4b4fac8
WRITE of size 4 at 0x12ac01b801d0 thread T0
#0 0x7ff6e3a627bd in main C:\Asana\Asana.cpp:10
#1 0x7ff6e3a66ce8 in invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#2 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#3 0x7ff6e3a66a8d in __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#4 0x7ff6e3a66d78 in mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#5 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#6 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

0x12ac01b801d0 is located 0 bytes to the right of 400-byte region [0x12ac01b80040,0x12ac01b801d0)
allocated by thread T0 here:
#0 0x7ffe83be7e91 in _asan_loadN_noabort+0x55555 (...\bin\HostX64\x64\clang_rt.asan_dbg_dynamic-x86_64.dll+0x180057e91)
#1 0x7ff6e3a62758 in main C:\Asana\Asana.cpp:9
#2 0x7ff6e3a66ce8 in invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#3 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#4 0x7ff6e3a66a8d in __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#5 0x7ff6e3a66d78 in mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#6 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#7 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

ASan Report

322023 Victor Ciura | @ciura_victor - ASan All The Things

SUMMARY: AddressSanitizer: heap-buffer-overflow C:\Asana\Asana.cpp:10 in main()

Shadow bytes around the buggy address:
 0x04d981eeffe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981eefff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981ef0000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
 0x04d981ef0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981ef0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x04d981ef0030: 00 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa
 0x04d981ef0040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb
 Shadow gap: cc

332023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow byte legend

(one shadow byte represents 8 application bytes)

(of the 8 application bytes, how many are accessible)

issues & markers

👍

342023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow Mapping

Process Memory Shadow Memory

👈Red zones

my allocated memory

➡ 🧪☣
Poisoned memory

352023 Victor Ciura | @ciura_victor - ASan All The Things

if (ShadowByte::IsBad(p))
 AsanRt::Report(p, sz)

*p = 0xbadf00d

Code Generation
(simplified)

*p = 0xbadf00d ➡

If the shadow byte is poisoned,

ASAN runtime reports the problem and crashes* the application

* unless continue_on_error is enabled

362023 Victor Ciura | @ciura_victor - ASan All The Things

Code Generation
(simplified)

 *() = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

ASAN maintains a lookup table where every 8 bytes of user memory are tracked by 1 shadow byte

=> 1/8 of the address space (shadow region)

Lookups into shadow memory need to be very fast

372023 Victor Ciura | @ciura_victor - ASan All The Things

bool ShadowByte::IsBad(Addr) // is poisoned ?
{  
 Shadow = Addr >> 3 + Offset;  
 return (*Shadow) != 0;
}

Code Generation
(simplified)

 *() = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

Lookups into shadow memory need to be very fast

Location of shadow region in memory

Process Memory Shadow Memory

382023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow Mapping

if (ShadowByte::IsBad(p))
 AsanRt::Report(p, sz);

*p = 0xf00d

p ShadowByte(p)

Process Memory Shadow Memory

392023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow Mapping

if (ShadowByte::IsBad(p))
 AsanRt::Report(p, sz);

*p = 0xbadf00d

p ShadowByte(p)

402023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

malloc()

ASAN malloc()

412023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

Shadow Memory

Poisoned memory

422023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

alloc 1 alloc 2 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 4 alloc 5

Shadow Memory

Poisoned memory

When an object is deallocated,

its corresponding shadow byte is poisoned

(delays reuse of freed memory)

Detect:
heap underflows/overflows
use-after-free & double free

432023 Victor Ciura | @ciura_victor - ASan All The Things

Stack Red Zones

my_buffer

my_integer

void Func()
{
 std::byte my_buffer[12];
 int my_integer = 5;
 ...
 ...
 ...
 ...
 my_buffer[12] = 0;
}

Stack

442023 Victor Ciura | @ciura_victor - ASan All The Things

Stack Red Zones

my_buffer

my_integer

void Func()
{
 std::byte my_buffer[12];
 int my_integer = 5;
 ...

 if (AsanRt::IsPoisoned(&my_buffer[12]))
 AsanRt::Report(my_buffer);
 my_buffer[12] = 0;
}

at runtime, the stack is poisoned when entering the function

Stack

stack red zones are un-poisoned when exiting the function

0xf1
0xf1

0xf3

0xf2

left

red zone

mid

red zone

right

red zone

libc++
libstdc++
MSVC STL

452023 Victor Ciura | @ciura_victor - ASan All The Things

AddressSanitizer ContainerOverflow

with the help of code annotations in std::vector

std::vector<T>

begin() end()

capacity()

github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

462023 Victor Ciura | @ciura_victor - ASan All The Things

AddressSanitizer ContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

std::vector<T>

begin() end()

capacity()

container-overflow

poisoned memory

std::vector<int> v;
v.push_back(0);
v.push_back(1);
v.push_back(2);
assert(v.capacity() >= 4);
assert(v.size() == 3);

T * p = &v[0];
std::cout << p[3];

v[3] could be detected by
simple checks in std::vector

0xfc

0xfc

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

472023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

Very fast instrumentation 

The average slowdown of the instrumented program is ~2x

github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

482023 Victor Ciura | @ciura_victor - ASan All The Things

Problems & Gotchas
stuff you need to know

492023 Victor Ciura | @ciura_victor - ASan All The Things

The (ASan) Trap

🪦your_process.exe
2023 - now

502023 Victor Ciura | @ciura_victor - ASan All The Things

One-n-Done problem

Blows up large test labs:

Eg.

36 hour builds

200,000+ tests

100+ distributed test machines

if (ShadowByte::IsBad(p))
 AsanRt::ReportAndAbort(p, sz)

*p = 0xbadf00d

😵

512023 Victor Ciura | @ciura_victor - ASan All The Things

ASan continue_on_error

C++ memory-safe-checked-build

Return control back to app, after reporting every error

Move ASan internal heap meta-data (“bad” writes clobber ASan internals with COE)

Summarize unique errors (changed error reporting)

since VS2022 v17.6

if (ShadowByte::IsBad(p))
 AsanRt::ReportContinue(p, sz)

*p = 0xbadf00d

522023 Victor Ciura | @ciura_victor - ASan All The Things

Warm Fuzzy Feelings

532023 Victor Ciura | @ciura_victor - ASan All The Things

Sanitizers + Fuzzing
💪

Automatically generate inputs to your program, to crash it

542023 Victor Ciura | @ciura_victor - ASan All The Things

Compile + ASan RT Fuzzing

Workflow

552023 Victor Ciura | @ciura_victor - ASan All The Things

Go Fuzz & Sanitize !

562023 Victor Ciura | @ciura_victor - ASan All The Things

ASan finds bugs

Really !

@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

Casting Out Code Goblins:
ASan's 🎃Halloween Guard

October 31 👻
2023

https://twitter.com/ciura_victor

