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Let's see how AddressSanitizer works behind the scenes (compiler and ASAN runtime) and analyze 
the instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples 
diagnosed by ASAN and see how easy it is to read memory snapshots to pinpoint the failure. 

In the code where the digital goblins play, 
And memory monsters lurk, ready to sway, 
ASan's the wizard, with spells so neat, 
Banishing bugs, making errors retreat. 

Pumpkins glow, and the night's full of haze, 
But with ASan, no app goes astray. 
Witches and warlocks might cackle and scheme, 
But ASan ensures a software dream. 

On All Hallows’ Eve, when codes might feel eerie, 
With ASan on watch, we’re never weary. 
For amidst the spook, and the bytes’ haunted fun, 
ASan’s the shield, making dangers undone!
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2021 CWE Top 25

Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
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Common Vulnerabilities and Exposures
Memory safety continues to dominate
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Opportunistic

exploits 😈

ROP  - return oriented programming

DOP  - data oriented programming

BOP  - block oriented programming

DDM - direct memory manipulation 

➡ they all exploit memory safety errors
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C++ developers
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C++ developers
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C++ Security Technologies 

Delivering safe C++ requires:


static analysis (compile-time)

dynamic analysis (runtime)

code hardening (secure codegen)
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Static vs Dynamic

Analysis

Quick primer
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Static Analysis
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offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

pointer aliasing makes it hard to prove things (alias analysis is hard problem)

vicious cycle: type propagation <> alias analysis 

Static Analysis
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Dynamic Analysis
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0 false positives!

Dynamic Analysis
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Sanitizers
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Sanitizers

AddressSanitizer - detects addressability issues


LeakSanitizer - detects memory leaks


ThreadSanitizer - detects data races and deadlocks


MemorySanitizer - detects use of uninitialized memory


HWASAN - hardware-assisted AddressSanitizer (consumes less memory)


UBSan - detects Undefined Behavior
github.com/google/sanitizers

https://github.com/google/sanitizers
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Address Sanitizer (ASan)

github.com/google/sanitizers/wiki/AddressSanitizer

De-facto standard for detecting memory safety issues 

It’s important for basic code correctness and true vulnerabilities

https://github.com/google/sanitizers/wiki/AddressSanitizer


152023  Victor Ciura  |  @ciura_victor  -  ASan All The Things

"Why did the programmer use ASan?"
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"Why did the programmer use ASan?"

-- credit ChatGPT4

"To address all the bugs!" 😄
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Address Sanitizer (ASan)

Detects:


Use after free (dangling pointer dereference)


Heap buffer overflow 

Stack buffer overflow 

Global buffer overflow 

Use after return 

Use after scope 

Initialization order bugs 

Memory leaks
github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer
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Address Sanitizer (ASan)

Started in LLVM by a team @ Google 


and quickly took off as a de facto industry standard 


for runtime program analysis

github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer
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Address Sanitizer (ASan)

LLVM starting with version 3.1 (2012)

 

GCC starting with version 4.8 (2013)


MSVC starting with VS 16.4 (2019)

http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com


192023  Victor Ciura  |  @ciura_victor  -  ASan All The Things

stack-use-after-scope
stack-buffer-overflow
stack-buffer-underflow
heap-buffer-overflow (no underflow)
heap-use-after-free
calloc-overflow
dynamic-stack-buffer-overflow (alloca)
global-overflow (C++ source code)
new-delete-type-mismatch

docs.microsoft.com/en-us/cpp/sanitizers/asan

memcpy-param-overlap
allocation-size-too-big
invalid-aligned-alloc-alignment
use-after-poison
intra-object-overflow
initialization-order-fiasco
double-free
alloc-dealloc-mismatch

ASan features:

https://docs.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-160
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global ‘C’ variables  
(in C a global can be declared many times, and each declaration can be of a different type and size)


__declspec(no_sanitize_address)  
(opt-out of instrumenting entire functions or specific variables)

automatically link appropriate ASan libs  
(eg. when building from command-line with /fsanitize:address)


use-after-return (opt-in)  
(requires code gen that utilizes two stack frames for each function)

ASan features:
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ASan features:
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expanded RtlAllocateHeap support 

ASan features:
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expanded RtlAllocateHeap support 

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

    ASAN_OPTIONS=windows_hook_legacy_allocators=true 

ASan features:
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expanded RtlAllocateHeap support 

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

    ASAN_OPTIONS=windows_hook_legacy_allocators=true 

explicit error messages for shadow memory interleaving and interception failure 

IDE integration can now handle the complete collection of exceptions which ASan can report

compiler/linker will suggest emitting debug information when building with ASan

ASan features:
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Address Sanitizer (ASan)
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Address Sanitizer (ASan)

IDE Exception Helper will be displayed when an issue is encountered  
=> program execution will stop 

ASan logging information => Output window
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==27748==ERROR: AddressSanitizer: stack-use-after-scope on address 0x0055fc68 at pc 0x793d62de bp 0x0055fbf4 sp 0x0055fbe8
WRITE of size 80 at 0x0055fc68 thread T0
    #0 0x793d62f6 in __asan_wrap_memset d:\_work\5\s\llvm\projects\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764
    #1 0x77dd46e7  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c46e7)
    #2 0x77dd4ce1  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c4ce1)
    #3 0x75d408fe  (C:\WINDOWS\System32\KERNELBASE.dll+0x100f08fe)
    #4 0xa5ada0 in try_get_first_available_module minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:271
    #5 0xa5ae99 in try_get_function minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:326
    #6 0xa5b028 in __acrt_AppPolicyGetProcessTerminationMethodInternal minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:737
    #7 0xa606ad in __acrt_get_process_end_policy minkernel\crts\ucrt\src\appcrt\internal\win_policies.cpp:84
    #8 0xa52dcb in exit_or_terminate_process minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:134
    #9 0xa52da7 in common_exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:280
    #10 0xa52fb6 in exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:293
    #11 0xa2deb3 in _scrt_common_main_seh d:\agent\_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:295
    #12 0x75ef6358  (C:\WINDOWS\System32\KERNEL32.DLL+0x6b816358)
    #13 0x77df7a93  (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e7a93)

Address 0x0055fc68 is located in stack of thread T0
SUMMARY: AddressSanitizer: stack-use-after-scope d:\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764 in __asan_wrap_memset
Shadow bytes around the buggy address:
  0x300abf30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x300abf70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x300abf80: 00 00 00 00 00 00 00 00 00 00 00 00 00[f8]00 00
  0x300abf90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x300abfd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
  Shadow gap:              cc
==27748==ABORTING

LLVM
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Snapshot File
Minidump file (*.dmp) <= Windows snapshot process (program virtual memory/heap + metadata)


VS can parse & open this => Points at the location the error occurred. 


Changes the way you report a bug, in general

➡
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Snapshot 
Loaded
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How does it work ?
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ASan is just Malware,  
used for Good 😈
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Compiler 


    instrumentation code, stack layout, and calls into runtime

    meta-data in OBJ for the runtime


Sanitizer Runtime 

   hooking  malloc(), memset(), memcpy(), strncpy(), RtlAllocate(), ...

   error analysis and reporting

   does not require complete recompile => great for interop

   zero false positives

Address Sanitizer (ASan)
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🪝
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==23364==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x12ac01b801d0 at 
pc 0x7ff6e3a627be bp 0x0097d4b4fac0 sp 0x0097d4b4fac8
WRITE of size 4 at 0x12ac01b801d0 thread T0 
#0 0x7ff6e3a627bd in main C:\Asana\Asana.cpp:10
#1 0x7ff6e3a66ce8 in invoke_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#2 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#3 0x7ff6e3a66a8d in __scrt_common_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#4 0x7ff6e3a66d78 in mainCRTStartup D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#5 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#6 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

0x12ac01b801d0 is located 0 bytes to the right of 400-byte region [0x12ac01b80040,0x12ac01b801d0)
allocated by thread T0 here: 
#0 0x7ffe83be7e91 in _asan_loadN_noabort+0x55555 (...\bin\HostX64\x64\clang_rt.asan_dbg_dynamic-x86_64.dll+0x180057e91)
#1 0x7ff6e3a62758 in main C:\Asana\Asana.cpp:9
#2 0x7ff6e3a66ce8 in invoke_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78
#3 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#4 0x7ff6e3a66a8d in __scrt_common_main D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330
#5 0x7ff6e3a66d78 in mainCRTStartup D:\agent\_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16
#6 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)
#7 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

ASan Report
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SUMMARY: AddressSanitizer: heap-buffer-overflow C:\Asana\Asana.cpp:10 in main()

Shadow bytes around the buggy address:
  0x04d981eeffe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981eefff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981ef0000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
  0x04d981ef0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x04d981ef0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x04d981ef0030: 00 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa
  0x04d981ef0040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
  0x04d981ef0080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa



  Addressable:             00
  Partially addressable:   01 02 03 04 05 06 07
  Heap left redzone:       fa
  Freed heap region:       fd
  Stack left redzone:      f1
  Stack mid redzone:       f2
  Stack right redzone:     f3
  Stack after return:      f5
  Stack use after scope:   f8
  Global redzone:          f9
  Global init order:       f6
  Poisoned by user:        f7
  Container overflow:      fc
  Array cookie:            ac
  Intra object redzone:    bb
  ASan internal:           fe
  Left alloca redzone:     ca
  Right alloca redzone:    cb
  Shadow gap:              cc
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Shadow byte legend  

(one shadow byte represents 8 application bytes)

(of the 8 application bytes, how many are accessible)

issues & markers

👍
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Shadow Mapping

Process Memory Shadow Memory

👈Red zones

my allocated memory

➡ 🧪☣
Poisoned memory
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if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz)

*p = 0xbadf00d

Code Generation 
(simplified)

*p = 0xbadf00d ➡

If the shadow byte is poisoned, 


ASAN runtime reports the problem and crashes* the application

* unless continue_on_error is enabled
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Code Generation 
(simplified)

 *(                                   ) = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

ASAN maintains a lookup table where every 8 bytes of user memory are tracked by 1 shadow byte


=> 1/8 of the address space (shadow region)

Lookups into shadow memory need to be very fast
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bool ShadowByte::IsBad(Addr) // is poisoned ?
{  
  Shadow = Addr >> 3 + Offset;  
  return (*Shadow) != 0;
} 
 

Code Generation 
(simplified)

 *(                                   ) = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

Lookups into shadow memory need to be very fast

Location of shadow region in memory



Process Memory Shadow Memory
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Shadow Mapping

if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz);

*p = 0xf00d

p ShadowByte(p)



Process Memory Shadow Memory
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Shadow Mapping

if (ShadowByte::IsBad(p)) 
  AsanRt::Report(p, sz);

*p = 0xbadf00d

p ShadowByte(p)
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Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

malloc()

ASAN malloc()
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Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

Shadow Memory

Poisoned memory
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Heap Red Zones

alloc 1 alloc 2 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 4 alloc 5

Shadow Memory

Poisoned memory

When an object is deallocated, 

its corresponding shadow byte is poisoned

(delays reuse of freed memory)

Detect:  
heap underflows/overflows 
use-after-free & double free 
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Stack Red Zones

my_buffer

my_integer

void Func()
{
  std::byte my_buffer[12];
  int my_integer = 5;
  ...
  ...
  ...
  ...
  my_buffer[12] = 0;
}

Stack
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Stack Red Zones

my_buffer

my_integer

void Func()
{
  std::byte my_buffer[12];
  int my_integer = 5;
  ...
  
  if (AsanRt::IsPoisoned(&my_buffer[12])) 
    AsanRt::Report(my_buffer);
  my_buffer[12] = 0;
}

at runtime, the stack is poisoned when entering the function

Stack

stack red zones are un-poisoned when exiting the function

0xf1
0xf1

0xf3

0xf2

left 

red zone

mid 

red zone

right 

red zone



libc++ 
libstdc++ 
MSVC STL
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AddressSanitizer ContainerOverflow

with the help of code annotations in std::vector

std::vector<T>

begin() end()

capacity()

github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow
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AddressSanitizer ContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

std::vector<T>

begin() end()

capacity()

container-overflow

poisoned memory

std::vector<int> v;
v.push_back(0);
v.push_back(1);
v.push_back(2);
assert(v.capacity() >= 4);
assert(v.size() == 3);

T * p = &v[0];
std::cout << p[3];

v[3] could be detected by 
simple checks in std::vector

0xfc

0xfc

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow
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Address Sanitizer (ASan)

Very fast instrumentation 

The average slowdown of the instrumented program is ~2x

github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers
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Problems & Gotchas
stuff you need to know



492023  Victor Ciura  |  @ciura_victor  -  ASan All The Things

The (ASan) Trap

🪦your_process.exe 
2023 - now
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One-n-Done problem

Blows up large test labs: 


Eg. 

36 hour builds

200,000+ tests 

100+ distributed test machines

if (ShadowByte::IsBad(p)) 
  AsanRt::ReportAndAbort(p, sz)

*p = 0xbadf00d

😵
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ASan continue_on_error

C++ memory-safe-checked-build  

Return control back to app, after reporting every error


Move ASan internal heap meta-data (“bad” writes clobber ASan internals with COE)


Summarize unique errors (changed error reporting)


since VS2022 v17.6

if (ShadowByte::IsBad(p)) 
  AsanRt::ReportContinue(p, sz)

*p = 0xbadf00d
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Warm Fuzzy Feelings
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Sanitizers + Fuzzing 
💪

Automatically generate inputs to your program, to crash it
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Compile + ASan RT Fuzzing 

Workflow
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Go Fuzz & Sanitize !
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ASan finds bugs

Really !
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