Casting Out Code Goblins:

ASan's = Halloween Guard

October 31 =
2023

Victor Ciura
YW @ciura_victor Principal Engineer Dq
f @ciura_victor@hachyderm.io Visual C++ o

https://twitter.com/ciura_victor

Casting Out Code Goblins: ASan's @Halloween Guard

In the code where the digital goblins play,
And memory monsters lurk, ready to sway,
ASan's the wizard, with spells so neat,
Banishing bugs, making errors retreat.

Pumpkins glow, and the night's full of haze,

But with ASan, no app goes astray.

Witches and warlocks might cackle and scheme,
But ASan ensures a software dream.

On All Hallows” Eve, when codes might feel eerie,
With ASan on watch, we’re never weary.

For amidst the spook, and the bytes’ haunted fun,
ASan’s the shield, making dangers undone!

Let's see how AddressSanitizer works behind the scenes (compiler and ASAN runtime) and analyze
the instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples
diagnosed by ASAN and see how easy it is to read memory snapshots to pinpoint the failure.

Casting Out Code Goblins: ASan's @Halloween Guard

In the code where the digital goblins play,
And memory monsters lurk, ready to sway,
ASan's the wizard, with spells so neat,
Banishing bugs, making errors retreat.

Pumpkins glow, and the night's full of haze,

But with ASan, no app goes astray.

Witches and warlocks might cackle and scheme,
But ASan ensures a software dream.

On All Hallows” Eve, when codes might feel eerie,
With ASan on watch, we’re never weary.

For amidst the spook, and the bytes’ haunted fun,
ASan’s the shield, making dangers undone!

Let's see how AddressSanitizer works behind the scenes (compiler and ASAN runtime) and analyze
the instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples
diagnosed by ASAN and see how easy it is to read memory snapshots to pinpoint the failure.

2021 CWE Top 25

Rank ID Name Score 2020 Rank Change
[1] CWE-787 Out-of-bounds Write 65.93 +1
[2] | CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 146.84 -1

[3] CWE-125 Out-of-bounds Read 1 24.9 | +1
[4] CWE-20 Improper Input Validation 20.47 -1
[5] CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’) 19.55 +5
[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) 19.54 0
[7] CWE-416 Use After Free 16.83 +1
[8] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal’) 14.69 +4
[9] CWE-352 Cross-Site Request Forgery (CSRF) 14.46 0

'[10] CWE-434 Unrestricted Upload of File with Dangerous Type 8.45 +5

4[11] CWE-306 Missing Authentication for Critical Function 7.93 +13

‘[12] CWE-190 Integer Overflow or Wraparound 7.12 -1

[13] CWE-502 Deserialization of Untrusted Data 6.71 +8

[14] CWE-287 Improper Authentication 6.58 0

[15] CWE-476 NULL Pointer Dereference 6.54 -2

[16] CWE-798 Use of Hard-coded Credentials 16.27 | +4

[17] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 5.84 -12

Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

Common Vulnerabilities and Exposures

Memory safety continues to dominate

of CVEs by patch year

of CVEs

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Patch Year

2018

100%

75%

50%

% of CVEs

25%

0%

Root cause of CVEs

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 201¢
Patch Year

B Memory safety [l Not memory safety

2023 Victor Ciura | @ciura_victor - ASan All The Things

Opportunistic

exploits &

'

0

ROP - return oriented programming ‘)
DOP - data oriented programming o . 4
BOP - block oriented programming .

DDM - direct memory manipulation

&J they all exploit memory safety errors

> Lo SRS
2023 Victor Ciura | @ciura_victor - ASan All The Things 5

C++ developers

2023 Victor Ciura | @ciura_victor - ASan All The Things_

C++ developers

-

R 4
‘

»

!

Ny
v §

2023 Victor Ciura | @ciura_victor - ASan All The Things

C++ developers

-

R 4
‘

»

!

Ny
v §

2023 Victor Ciura | @ciura_victor - ASan All The Things

C++ Security Technologies

Source Modifications

Dynamic Analysis
GSL in IDE
Attributes for drivers
SAL

#pragma(strict_gs, . . .

Static Analysis % | |
in IDE Static Analysis Dynamic Analysis
P Address Sanitizer
/Analyze .
GSL Checker libFuzzer
SAL CodeCoverage

plugin V\

Secure CodeGen

Delivering safe C++ requires:

/GS /GS+
~ static analysis (compile-time) /éig
© dynamic analysis (runtime) ;CastGuard

~ code hardening (secure codegen) /SafeEH

2023 Victor Ciura | @ciura_victor - ASan All The Things

Quick primer

Static vs Dynamic
Analysis

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code

< Is Intimately linked to the used programming language

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

~ can detect a lot of semantic issues

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language
© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

~ very poor at whole program analysis (follow connections in different TUs)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

~ very poor at whole program analysis (follow connections in different TUs)

- almost helpless around virtual functions (difficult to de-virtualize calls)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

~ very poor at whole program analysis (follow connections in different TUs)

- almost helpless around virtual functions (difficult to de-virtualize calls)

-~ weak analysis ability around global pointers

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

~ very poor at whole program analysis (follow connections in different TUs)

- almost helpless around virtual functions (difficult to de-virtualize calls)

~ weak analysis ability around global pointers

© pointer aliasing makes it hard to prove things (alias analysis is hard problem)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Static Analysis

- offline (out of the normal compilation cycle) => can take longer to process source code
< Is Intimately linked to the used programming language

© can detect a lot of semantic issues

~ can yield a lot of false positive results (sometimes you go on a wild goose chase)

~ very poor at whole program analysis (follow connections in different TUs)

- almost helpless around virtual functions (difficult to de-virtualize calls)

~ weak analysis ability around global pointers

© pointer aliasing makes it hard to prove things (alias analysis is hard problem)

~ viclous cycle: type propagation <> alias analysis

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

< runtime overhead (performance impact: depending on tool, from 2x up to 10x)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode
~ runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

-~ sometimes intrusive: you need to compile the program in a special mode

~ runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

-~ sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

© runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

-~ sometimes difficult to map error reports into source code for Release/optimized builds
(symbols info, line numbers, inlined functions)

-~ some tools require to recompile the whole program in instrumented mode

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

© runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

- sometimes difficult to map error reports into source code for Release/optimized builds
(symbols info, line numbers, inlined functions)

-~ some tools require to recompile the whole program in instrumented mode

~ must integrate runtime analysis with Test Units

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

© runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

- sometimes difficult to map error reports into source code for Release/optimized builds
(symbols info, line numbers, inlined functions)

-~ some tools require to recompile the whole program in instrumented mode

~ must integrate runtime analysis with Test Units

~ must ensure good code coverage for the runtime analysis (all possible scenarios)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

© runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

- sometimes difficult to map error reports into source code for Release/optimized builds
(symbols info, line numbers, inlined functions)

-~ some tools require to recompile the whole program in instrumented mode

~ must integrate runtime analysis with Test Units

~ must ensure good code coverage for the runtime analysis (all possible scenarios)

~ the biggest impact when combined with fuzzing

2023 Victor Ciura | @ciura_victor - ASan All The Things

Dynamic Analysis

~ sometimes intrusive: you need to compile the program in a special mode

~ runtime overhead (performance impact: depending on tool, from 2x up to 10x)

o extra-memory usage (for memory related tools/instrumentation), 2x or more

- sometimes difficult to map error reports into source code for Release/optimized builds
(symbols info, line numbers, inlined functions)

~ some tools require to recompile the whole program in instrumented mode

© must integrate runtime analysis with Test Units

~ must ensure good code coverage for the runtime analysis (all possible scenarios)

~ the biggest impact when combined with fuzzing

0 false positives!

2023 Victor Ciura | @ciura_victor - ASan All The Things

Sanitizers

2023 Victor Ciura | @ciura_victor - ASan All The Things

e) Sanitizers

- AddressSanitizer - detects addressability issues

~ LeakSanitizer - detects memory leaks

~ ThreadSanitizer - detects data races and deadlocks

~ MemorySanitizer - detects use of uninitialized memory

-~ HWASAN - hardware-assisted AddressSanitizer (consumes less memory)

- UBSan - detects Undefined Behavior
github.com/google/sanitizers

2023 Victor Ciura | @ciura_victor - ASan All The Things 13

https://github.com/google/sanitizers

Address Sanitizer (ASan)

De-facto standard for detecting memory safety issues

It’s important for basic code correctness and true vulnerabilities

github.com/google/sanitizers/wiki/AddressSanitizer

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://github.com/google/sanitizers/wiki/AddressSanitizer

"Why did the programmer use ASan?”

2023 Victor Ciura | @ciura_victor - ASan All The Things

"Why did the programmer use ASan?”
"To address all the bugs!"

2023 Victor Ciura | @ciura_victor - ASan All The Things

"Why did the programmer use ASan?”
"To address all the bugs!"

-- credit ChatGPT4

V' Address Sanitizer (ASan)

Detects:

o Use after free (dangling pointer dereference)
o Heap buffer overflow

o Stack buffer overflow

o Global buffer overflow

o Use after return

o Use after scope

< Initialization order bugs

© Memory leaks
"y github.com/google/sanitizers/wiki/AddressSanitizer

2023 Victor Ciura | @ciura_victor - ASan All The Things 16

https://github.com/google/sanitizers/wiki/AddressSanitizer

< ¥ Address Sanitizer (ASan)

Started in LLVM by a team @ Google
and quickly took off as a de facto industry standard

for runtime program analysis

github.com/google/sanitizers/wiki/AddressSanitizer

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://github.com/google/sanitizers/wiki/AddressSanitizer

Address Sanitizer (ASan)

LLVM starting with version 3.1 (2012)
GCC starting with version 4.8 (2013)

MSVC starting with VS 16.4 (2019)

2023 Victor Ciura | @ciura_victor - ASan All The Things

http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com

ASan features:

ostack-use-after-scope omemcpy-param-overlap
ostack-buffer-overflow vallocation-size-too-big
ostack-buffer-underflow o1nvalid-aligned-alloc-alignment
oheap-buffer-overflow (no underflow) ouse-after-poison
oheap-use-after-free o1ntra-object-overflow
ocalloc-overflow o1nitialization-order-fiasco
odynamic-stack-buffer-overflow (alloca) odouble-free

oglobal-overflow (C++ source code) valloc-dealloc-mi1smatch

onew-delete-type-mismatch

docs.microsoft.com/en-us/cpp/sanitizers/asan

2023 Victor Ciura | @ciura_victor - ASan All The Things 19

https://docs.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-160

ASan features:

o global ‘C’ variables
(in C a global can be declared many times, and each declaration can be of a different type and size)

o __declspec(no_sanitize_address)
(opt-out of instrumenting entire functions or specific variables)

o automatically link appropriate ASan libs
(eg. when building from command-line with /fsanitize:address)

o use-after-return (opt-1in)
(requires code gen that utilizes two stack frames for each function)

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

~ expanded Rt LAl locateHeap support

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

~ expanded Rt LAl locateHeap support
© support for the legacy GlobalAlloc and LocalAl Loc family of memory functions

ASAN_OPTIONS=windows_ hook_ legacy allocators=true

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

© expanded Rt LAl locateHeap support
© support for the legacy GLlobalAlloc and Loca LAl Loc family of memory functions

ASAN_OPTIONS=windows_ hook_ legacy allocators=true

- explicit error messages for shadow memory interleaving and interception failure

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

© expanded Rt LAl locateHeap support

~ support for the legacy GlobalAlloc and LocalAl Loc family of memory functions
ASAN_OPTIONS=windows_ hook_ legacy allocators=true

- explicit error messages for shadow memory interleaving and interception failure

- IDE integration can now handle the complete collection of exceptions which ASan can report

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan features:

© expanded Rt LAl locateHeap support

© support for the legacy GLlobalAlloc and Loca LAl Loc family of memory functions
ASAN_OPTIONS=windows_ hook_ legacy allocators=true

- explicit error messages for shadow memory interleaving and interception failure

- IDE integration can now handle the complete collection of exceptions which ASan can report

- compiler/linker will suggest emitting debug information when building with ASan

2023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

ConsoIeAppIication6 v\ (Global Scope) v|® main()
1 #include <iostream>
2
3 —-lint main()
4 {
5 int* array = new int[100];
B array[100] =1 &
7 | Y

Exception Unhandled B X

Address Sanitizer Error: Heap buffer overflow

Full error details can be found in the output window

Copy Details | Start Live Share session...
> Exception Settings

2023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

IDE Exception Helper will be displayed when an issue iIs encountered
=> program execution will stop

ASan logging information => Output window

© 6 array[100] = 1; &
7 H

e

Exception Unhandled B X

Address Sanitizer Error: Heap buffer overflow

Full error details can be found in the output window

Copy Details | Start Live Share session...
> Exception Settings

2023 Victor Ciura | @ciura_victor - ASan All The Things

==27748==ERROR: AddressSanitizer: stack-use-after-scope on address 0x0055fc68 at pc 0x793do2de bp 0x0055fbf4 sp 0x0055fbel
WRITE of size 80 at 0x0055fc68 thread TO
#0 0x793d62f6 in __asan_wrap_memset d:_work\5\s\1lvm\projects\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764
#1 Ox77dd46e7 (C:\WINDOWS\SYSTEM32\ntdll.d1l1+@x4b2c46e7)
#2 Ox77dd4cel (C:\WINDOWS\SYSTEM32\ntdll.d1l1+@x4b2c4cel)
#3 Ox75d408fe (C:\WINDOWS\System32\KERNELBASE.d11+0x100f08fe)
#4 Oxa5ada® in try_get_first_available_module minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:271
#5 0xa5ae99 in try_get_function minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:326
#6 0xa5b028 in __acrt_AppPolicyGetProcessTerminationMethodInternal minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:737
#7 Oxablobad in __acrt_get_process_end_policy minkernel\crts\ucrt\src\appcrt\internal\win_policies.cpp:84
#8 Oxa52dcb in exit_or_terminate_process minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:134
#9 0Oxa52da7 in common_exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:280
#10 0xa52fb6 in exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:293
#11 Oxa2deb3 in _scrt_common_main_seh d:\agent_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.1inl:295
#12 Ox75ef6358 (C:\WINDOWS\System32\KERNEL32.DLL+@x6b816358)
#13 Ox77df7a93 (C:\WINDOWS\SYSTEM32\ntdl1l.dl1+0x4b2e7a93)

Address 0x0055fc68 1is located in stack of thread TO
SUMMARY : AddressSanitizer: stack-use-after-scope d:\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764 in
Shadow bytes around the buggy address:
0x300abf30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x300abf70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x300abf80: 00 00 00 00 00 00 00 00 00 00 00 00 V[f8]100 00
0x300abf90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x300abfdd: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):

asan_wrap_memset

Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global 1init order: fo
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
Shadow gap: cC

==27748==ABORTING

2023 Victor Ciura | @ciura_victor - ASan All The Things

Snapshot File

Minidump file (*.dmp) <= Windows snapshot process (program virtual memory/heap + metadata)

VS can parse & open this => Points at the location the error occurred.

Changes the way you report a bug, in general

ShareSource.dmp + X BEIGEJI{<S

Minidump File Summary
11/5/2018 4:00:16 PM

A Dump Summary

Dump File

Last Write Time
Process Name
Process Architecture
Exception Code
Exception Information
Heap Information
Error Information

App.g.i.cs

ShareSource.dmp : C:\User
11/5/2018 4:00:16 PM
ShareSource.exe : C:\Users\
x64

0x80000004

A trace trap or other single-
Present

4 4
~ System Information
OS Version 10.0.17763
CLR Version(s) 4.6.26702.0
~ Modules
Search P
Module Name Moduls
ShareSource.exe 1.0.0.0
ntdll.dll 10.0.177
kernel32.dll 10.0.177

App.xaml.cs

A~ Actions

P Debug with Managed Only
P Debug with Mixed

P Debug with Native Only
t=) Debug Managed Memory
0.1 Set symbol paths

ul Copy all te clipboard

2023 Victor Ciura | @ciura_victor - ASan All The Things

xl File Edit View Project Build Debug Test Analyze Tools Extensions Window

Q- o W WM
Process: [] 7f1e33c6-68ba-406b-9095-a4b: ~ Thread: [7084] Main Thread v Y

P Continue ~ M _ | S 5 = =

HeapCorruptionSample.cpp # X 7f1e33c6-68ba-406...38f59362a.txt.dmp

%] Miscellaneous Files
CloseHandle(F1leHandle);

(Global Scope)

Exception Unhandled
oid* freed_pointer = mallo:

free(freed_pointer); ASAN Error: Stack Buffer Overflow
= if (array[@] == 'a') {
if (array[1l] == 'b")
if (array[2] == 'c'
if (array[3] ==
if (array[4
if (arri . . .
ril Full error details can be found in the outout window
¥ i
P Exception Settings

if (array[10] == 'B")
if (array[300] == 'X') &

printf("we'll never get here either");

if (array[11] == 'k' && array[38] == 'g' && array[100]
{

((int)freed_pointer) = @xl1lc@debad;
¥
else if (array[23] == "\xba')
{

free(freed_pointer);

}

f (strstr(array, "short"))

EI o
|«
100% ~ @ No issues found

Locals v I X Output

Search (Ctrl+E) P~ Search Depth: 3
Type ox3019fefo: 00
0x3019ffe0: 00

arge 2 int 0x3019ff10: 00

argv 0x04301ad0 {0x04301adc "HeapCorruptionSample.e... char * * 0x3019Ff20: f1
? array 0x00cff6c4 " Q ~ char[256] 0x3019ff30: 00
FileHandle 0x00000000 void * =>0x3019ff40: 00
@ freed_pointer 0x00000000 void * (FECRIRER (20

: 0x3019ff60: 00
readBytes 27 unsigned long 0x3019ff70: 00

nnnnnn affon. nn

Watch 1 Call Stack Breakpoints Exception Settings Command Window Immediate Window |

00
00
00
00
00
f2
00
00
00

nn

Help Search Visual Studio (Ctrl+Q)

Stack Frame: main

Show output from: Debug

00
00
00
00
00
f2
00
00
00

nn

P

Solution1

00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
04[f2]f8
00 00 00
00 00 00
00 00 00

nA AN nn

~ @ main(int argc, char ** argv)

|/} Live Share

JR

o]

D16.0STG | ADMIN

Jai0|dx3 wes] Jaio|dx3 uonn|os

xl File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q) o Solution1 JR — X

o - oo Wl » Continue - M _ O > A e F_ g = 2% R _ |/ Live Share 8- D16.0STG | ADMIN
Process: [] 7f1e33c6-68ba-406b-9095-a4b: ~ Thread: [7084] Main Thread i ¢ Stack Frame: main =
HeapCorruptionSample.cpp + X 7f1e33c6-68ba-406...38f59362a.txt.dmp v [g
%] Miscellaneous Files v (Global Scope) ~ @ main(int argc, char ** argv) v §'
CloseHandle(F1leHandle); L m
x
Exception Unhandled P X A =
void* freed_pointer = mallo @©
free(freed_pointer); "1 ASAN Error: Stack Buffer Overflow -
3
= if (array[@] == 'a"') { rgn
if (array[1] == 'b") - 5
if (array[2] == 'c' %
if (array[3] == o
if (array[4
if (arri : : : v
_ Full error details can be found in the outout window
prii
) |
b Exception Settings
if (array[10] == 'B")
- if (array[300] == 'X') &)
printf("we'll never get here either");
SnapShOt = if (array[11] == 'k"' && array[38] == 'g' && array[100] == 'b")
{
Loaded *((int*)freed pointer) = ©x1c@debad;
I }
= else if (array[23] == '\xba') O
{
free(freed pointer); double free
| }
= else if (strstr(array, "short"))
{ -
PDV/TIrX luaida w;md IDV/TE %\ wamn T T an/ 1\ .
100% ~ @& No issues found
Locals v I X Output v 1 X
Search (Ctrl+E) P~ Search Depth: 3~ Show output from: Debug - 2= | 23
N Ve Type 0x3019fef@: 00 00 0O G0 G0 00 00 00 00 00 00 00 00 00 00 00 a
) S 2 e 0Xx3019ff00: 00 00 00 00 00 00 00 00 00 OO OO OO 0O 0O 0O 00
9 . i 0x3019ff10: 00 00 00 00 00 00O 0O 00 0O 00 00 00 00 00 00 f1
b @ argv 0x04301ad0 {0x04301adc "HeapCorruptionSample.e... char * * Ox3019FF20: f1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
> @ array 0x00cff6c4 " Q ~ char[256] 0x3019ff30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
@ FileHandle 0x00000000 void * =>0x3019ff40: @0 f2 f2 f2 f2 @4[f2]f8 f3 3 f3 f3 00 00 00 00
@ freed pointer 0x00000000 void * 0Xx3019ff50: 00 00 00 00 00 00 00 00 00 OO 0O OO 0O 0O 0O 00 -
@ -P . 0x3019ff60: 00 00 00 00 00O 0O 0O 00 0O 0O 00 0O 0O 00 00 00
readBytes =1 unsigned long 0x3019ff70: 00 00 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00 .
NvO2N10ELLoN .. NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
Autos Watch 1 Call Stack Breakpoints Exception Settings Command Window Immediate Window 1 b
[| »

2023 Victor Ciura | @ciura_victor - ASan All The Things | | | T 26

How does it work ?

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan is just Malware,
used for Good &

2023 Victor Ciura | @ciura_victor - ASan All The Things

Address Sanitizer (ASan)

Compiler

~ Instrumentation code, stack layout, and calls into runtime
~ meta-data in OBJ for the runtime

Sanitizer Runtime

o hooking malloc(), memset(), memcpy(), strncpy(), RtlAllocate(),
< error analysis and reporting

-~ does not require complete recompile => great for interop

- zero false positives

2023 Victor Ciura | @ciura_victor - ASan All The Things

call Malloc | malloc;
jmp _asan_malloc - asan _malloc:

ret
\ ASAN WORK
Malloc Body \ Jjmp malloc_ret

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan Report

==23364==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x12ac01b801d0@ at
pc Ox7ffoe3abl27be bp Ox0097d4b4facd sp Ox0097d4b4facs8

WRITE of size 4 at 0x12ac01b801d@ thread TO

#0 Ox7ffoe3a627bd 1n main C:\Asana\Asana.cpp:10

#1 Ox7ffoel3daboce8 1n invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78

#2 Ox7ffoe3abbbcd 1n __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#3 Ox/7ffee3aboa8d 1n __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.1inl:330

#4 Ox7ffoe3a66d78 1n mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16

#5 Ox7ffee9a7o6fd3 1n BaseThreadInitThunk+@x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)

#o Ox7ffeea97cecd 1n RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dl1+0x18004cec?d)

0x12ac01b8@1d0 1s located @ bytes to the right of 400-byte region [0x12ac@1b80040,0x12ac01b801d0)

allocated by thread TO here:

#0 Ox7ffe83be7e91 1n _asan_loadN_noabort+0x55555 (...\bin\HostX64\x64\clang_rt.asan_dbg_dynamic-x86_64.d11+0x180057e91)
#1 Ox7ffoe3a62758 1n main C:\Asana\Asana.cpp:9

#2 Ox7ffoe3abb6ce8 1n invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78

#3 Ox7ffeeldabobcd 1n __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288
#4 Ox7ffoe3a66a8d 1n __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330

#5 Ox7ffoe3a66d78 1n mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16

#0 Ox/7ffee9a7’o6fd3 1n BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)

#7 Ox7ffeea97cecd 1n RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdl1l.dl1+0x18004cec?d)

2023 Victor Ciura | @ciura_victor - ASan All The Things

SUMMARY: AddressSanitizer: heap-buffer-overflow C:\Asana\Asana.cpp:10 in main()

Shadow bytes around the buggy address:
0x04d981leeffed: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x04d98leefff0: 00 00 00 00 00 00 00 00 00 V0 00 0O 00 00 00 00
0x04d981ef@000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 V0 0O
0x04d981ef0010: 00 00O VO VO 00 VO 00 V0 00O V0 00 V0 0O 00 00 00
0x04d981ef0020: 00 0O VO 0O VO 00 VO V0 0O VO 00 VO V0 0O V0 00

=>0x04d981ef0030: 00 00 00 00 00 00 V0 00 00 00| fa]fa fa fa fa fa
0x04d981ef@040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Ox04d981ef@050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Ox04d981ef@000@: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x04d981ef0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Ox04d981ef@080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

2023 Victor Ciura | @ciura_victor - ASan All The Things

Addressable: 00 &
Partially addressable: 01 02 03 04 05 06 07 (of the 8 application bytes, how many are accessible)

Heap left redzone: fa —

Freed heap region: fd

Stack left redzone: fl

Stack mid redzone: f2

Stack right redzone: f3

Stack after return: f5

Stack use after scope: f8

Global redzone: fo issues & markers

Global 1nit order: fo

Poisoned by user: f7

Container overflow: fc

Array cookie: ac

Intra object redzone: bb

ASan 1internal: fe

Left alloca redzone: ca Shadow byte legend
Right alloca redzone: cb

Shadow gap: cC (one shadow byte represents 8 application bytes)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow Mapping

my allocated memory

LN
/ /ﬁ

Poisoned memory

S
~{_0 Red zones

Process Memory Shadow Memory

2023 Victor Ciura | @ciura_victor - ASan All The Things

Code Generation
(simplified)

1f (ShadowByte: :IsBad(p))
*n = @xbadfo0d AsanRt: :Report(p, sz)

*p = Oxbadf00d

If the shadow byte is poisoned,

ASAN runtime reports the problem and crashes* the application

*unless continue on_error is enabled

2023 Victor Ciura | @ciura_victor - ASan All The Things 35

Code Generation
(simplified)

Lookups into shadow memory need to be very fast

ASAN maintains a lookup table where every 8 bytes of user memory are tracked by 1 shadow byte

=> 1/8 of the address space (shadow region)

A Shadow Byte: *((User_Address >> 3) + 0x30000000) = OxF3;

T

Stack use after scope

2023 Victor Ciura | @ciura_victor - ASan All The Things 36

Code Generation
(simplified)

Lookups into shadow memory need to be very fast

bool ShadowByte: :IsBad(Addr) // 1s poisoned 7

{
Shadow = Addr >> 3 + Offset;
return (*Shadow) !'= 0; \
}

Location of shadow region in memory

v

A Shadow Byte: @ *((User_Address >> 3) + 0x30000000) = OxF3;

T

Stack use after scope

2023 Victor Ciura | @ciura_victor - ASan All The Things 37

Shadow Mapping

1f (ShadowByte: :IsBad(p))
AsanRt: :Report(p, sz);

*p = 0xf00d

Process Memo Shadow Memory

D ShadowByte(p)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Shadow Mapping

1f (ShadowByte: :IsBad(p))
AsanRt: :Report(p, sz);

*p = Oxbadfood

Process Memory Shadow Memory

D ShadowByte(p)

2023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

malloc()

ASAN malloc()

2023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

ASAN malloc()

Shadow Memory

Poisoned memory

2023 Victor Ciura | @ciura_victor - ASan All The Things

Heap Red Zones

ASAN malloc()

When an object is deallocated,
its corresponding shadow byte is poisoned
(delays reuse of freed memory)

Shadow Memory

Detect:
<~ heap underflows/overflows
o use-after-free & double free

Poisoned memory

2023 Victor Ciura | @ciura_victor - ASan All The Things

Stack Red Zones

vold Func()

i
std: :byte my_buffer[12];
int my_integer = 5;
my_buffer[12] = 0;

5

Stack

2023 Victor Ciura | @ciura_victor - ASan All The Things

Stack Red Zones

at runtime, the stack is poisoned when entering the function

vold Func()

1
std: :byte my_buffer[12];
int my_integer = 5;

left Oxf1
red zone Oxf1

mid OxF2 1f (AsanRt::IsPoisoned(&my_buffer[12]))
red zone AsanRt: :Report(my_buffer);
fight my_buffer[12] = 0;
xf3 }
red zone

N

stack red zones are un-poisoned when exiting the function

Stack

2023 Victor Ciura | @ciura_victor - ASan All The Things

AddressSanitizer ContainerOverflow
std: :vector<T>

begin() end ()

S A

capacity()

libc++

with the help of code annotations in std::vector libstdc++
MSVC STL

github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

AddressSanitizer ContainerOverflow

std: :vector<T>
bEiin () end() poisoned memory Oxfc
1—f-

capacity()

std: :vector<int> v;
v.push_back(®);
v.push_back(1);
v.push_back(2);
assert(v.capacity() >= 4);
assert(v.size() == 3);

T * p = &v[0]; container-overflow v[3] could be detected by
std: :cout << p[3]; Oxfc simple checks in std::vector

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

'Address Sanitizer (ASan)

Very fast instrumentation

The average slowdown of the instrumented program is ~/x

github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

2023 Victor Ciura | @ciura_victor - ASan All The Things

https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

Problems & Gotchas

stuff you need to know

2023 Victor Ciura | @ciura_victor - ASan All The Things

The (ASan) Trap

yOour_process.exe
2023 - now

2023 Victor Ciura | @ciura_victor - ASan All The Things

One-n-Done problem

Blows up large test labs:

1f (ShadowByte: :IsBad(p))

3¢ AsanRt: :ReportAndAbort(p, sz) §.>?

~ 36 hour builds
<~ 200,000+ tests

~ 100+ distributed test machines *p = Oxbadf00d

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan continue on error

C++ memory-safe-checked-build

- Return control back to app, after reporting every error

- Move ASan internal heap meta-data (“bad” writes clobber ASan internals with COE)

© Summarize unigue errors (changed error reporting)

1f (ShadowByte: :IsBad(p))
AsanRt: :ReportContinue(p, sz)

*n = Oxbadf00d
since VS2022 v17.6

2023 Victor Ciura | @ciura_victor - ASan All The Things 51

Warm Fuzzy Feelings

2023 Victor Ciura | @ciura_victor - ASan All The Things

Sanitizers + Fuzzing

L

Automatically generate inputs to your program, to crash it

2023 Victor Ciura | @ciura_victor - ASan All The Things

Workflow

N

Compile + ASan RT Fuzzing

- _/

2023 Victor Ciura | @ciura_victor - ASan All The Things

Go Fuzz & Sanitize !

2023 Victor Ciura | @ciura_victor - ASan All The Things

ASan finds bugs

Really !

2023 Victor Ciura | @ciura_victor - ASan All The Things

Casting Out Code Goblins:

ASan's = Halloween Guard

October 31 =
2023

Victor Ciura
YW @ciura_victor Principal Engineer Dq
f @ciura_victor@hachyderm.io Visual C++ o

https://twitter.com/ciura_victor

