

@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

June 2023

https://twitter.com/ciura_victor

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 X

Abstract

The C++ community is very large and quite vocal when it comes to controversial issues. We’re very fragmented
on many topics, based on the breadth of the C++ ecosystem and the background/experience we each bring
from our C++ niche.

From CppCoreGuidelines to opinionated best practices to established idioms, there’s a lot of good information
easily available. Mixed up with all of this there are also plenty of myths. Some myths stem from obsolete
information, some from bad teaching materials.

In this presentation, I will dissect a few of the most popular C++ myths to a level of detail not possible on
Twitter… and without the stigma of newb/duplicate/eyeroll one might experience when asking these questions
on StackOverflow.

Expect the familiar “Busted”, “Plausible”, or “Confirmed” verdicts on each myth and come prepared to chat
about these. 

This is Part 2 of the Mythbusters series.

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 3

Q & A

Do ask questions as we go along

Comments are welcome, too🙋

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 4

Actually, ...

The C++ community is very large and quite vocal  

when it comes to controversial issues

🗣 🗣
Actually...

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 5

Your opinion...

Developers love to treat their opinions like facts: "This is the right way"

No, that's just another way, with a different set of pros and cons.

-- David Fowler

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 6

We're Different

We’re very fragmented on many topics

based on the breadth of the C++ ecosystem

background/experience we each bring from our C++ niche

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 7

We're Different

We’re very fragmented on many topics (Bjarne Stroustrup's 🐘 elephant metaphor)

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 8

Sources

A lot of good information easily available:

CppCoreGuidelines

(opinionated) best practices

established idioms

books

conference presentations

StackOverflow

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 9

Myths

Mixed up with all of this, there are also plenty of myths

some myths stem from obsolete information

some from bad teaching materials

old coding guidelines in some projects

onboarding C++ beginners on legacy C++ codebases (bad habits by example)

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 10

Help 😸

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 11

Motivation

How it started...

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 12

Mythbusting with Jason - unscripted improv (Pandemic edition)
youtube.com/watch?v=Bu1AEze14Ns21k views

https://www.youtube.com/watch?v=Bu1AEze14Ns

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 13

C++ Mythbusters - Season 1

youtube.com/watch?v=ZGgrUhVNsSI

https://www.youtube.com/watch?v=ZGgrUhVNsSI

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 14

Motivation

I want to instigate a healthy dialog,

so speak up🗣

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 15

Verdict

🙋

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 16

Verdict

A programmer's staple response:

"It depends..." 🤓

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 17

Verdict

Let's test this...

🙋

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 18

Test Myth

C++ is inherently unsafe and there's
very little* we can do about it

Just kidding 😄

It's not a myth, we've known this for years before NSA.

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 19

Test Myth

It's 2023, we should be able to leverage the

power of C++20 modules to (re)structure our

codebase and improve build times.

⚙

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 20

Test Myth

coroutines shipped in C++20

Kinda... 😔

We're going to get a generators library in C++23 (ranges library)

#include <generator>

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 21

CÖRUTIN @ C++ On Sea

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 22

Verdict

I think you got how it works

🙋

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 23

Mythbusting Series

<Part 2 of N> presentation

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 24

Season 1 Recap

What we covered so far (Part 1):

#11 printf/sprintf are very fast

#14 C++ is not easily toolable 🛠

#19 std::regex is too slow for production use

#24a std::optional inhibits optimizations

#24b std::optional complicates APIs (boxes, lifting, continuation monads)

#31 std::move() moves

#36 Always pass input arguments by const reference (move, sinks)

#5 Adding `const` always helps (places where not to use `const`)

#37 Make All Data Members Private? (abstraction, structs, perf, DOD)

#40 Iterators must go!

#0 New (C++) is the enemy of the old

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 25

C++ Myths

Let's dig in!

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 26

Tools 🪓

Humans Depend on Tools

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 27

Myth #14

C++ is not easily toolable 🛠

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 28

Tools 🧰

I'm a tool builder

Advanced Installer Clang Power Tools Visual C++

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 29

Programmers Depend on Tools

code editor/IDE recent compiler(s)
[conformant/strict]

(visual) debugger

linter/formatter

test framework

perf profiler

CI/CD service

SCM client

package manager

static analyzer

dynamic analyzer
(runtime)

(automated) refactoring tools

build system

+ fuzzing
code reviews platform

IntelliSense

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 30

Programmers Depend on Tools

youtube.com/watch?v=q7Gv4J3FyYE
C++ Weekly - The Right Way to Write C++ Code

github.com/lefticus/cpp_weekly/issues/175

https://www.youtube.com/watch?v=q7Gv4J3FyYE
https://github.com/lefticus/cpp_weekly/issues/175

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 31

Myth #14

C++ is not easily toolable 🛠

Get to know your tools well

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 32

Myth #10

C++ is slow to compile

It's all about the structure & build configuration you have.

So, you think you know why your builds take so long... you'd be surprised.⚙

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 33

Myth #10

Multiple ways to improve (or screw up) your build:

build configuration

project dependencies (graph)

header usage (compilation firewalls)

unity builds

PCH

C++ modules/header units

build caches

build accelerators

vfs

... use ranges

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 34

Myth #10

artificial-mind.net/projects/compile-health/

https://artificial-mind.net/projects/compile-health/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 35

Myth #10

artificial-mind.net/projects/compile-health/

https://artificial-mind.net/projects/compile-health/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 36

Myth #10

Tooling can help: ClangBuildAnalyzer -ftime-trace🧰

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 37

Myth #10

Tooling can help: vcperf + WPA🧰

• vcperf /start MySession
• build your C++ project
• vcperf /stop MySession outputFile.etl

devblogs.microsoft.com/cppblog/introducing-c-build-insights/

https://devblogs.microsoft.com/cppblog/introducing-c-build-insights/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 38

Myth #10

Tooling can help: Build Insights in Visual Studio🧰

devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

https://devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 39

Myth #10

Tooling can help: Build Insights in Visual Studio🧰

devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

https://devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 40

Myth #10

youtube.com/watch?v=PfHD3BsVsAM

https://www.youtube.com/watch?v=PfHD3BsVsAM

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 41

Myth #10

C++ is slow to compile

It can be, but if you work on it (good tooling) you can drastically improve it.

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 42

Myth #12

The sad state of Debug performance in C++

“zero cost abstraction” is a kind of a lie - for sure on Debug builds (no optimizations)

eg.

int i = 0;
std::move(i);
std::forward<int&>(i);

➡ static_cast<int&&>(i);

vittorioromeo.info/index/blog/debug_performance_cpp.html

https://vittorioromeo.info/index/blog/debug_performance_cpp.html

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 43

Myth #12

godbolt.org/z/Pj6xahP9j

https://gcc.godbolt.org/z/Pj6xahP9j

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 44

Myth #12

godbolt.org/z/5vEhrnPbK

☹

https://gcc.godbolt.org/z/5vEhrnPbK

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 45

Myth #12

devblogs.microsoft.com/cppblog/improving-the-state-of-debug-performance-in-c/

Compilers can implement some mechanism to acknowledge meta functions like
std::move and std::forward as compiler intrinsics - in the compiler front-end

MSVC took an alternative approach and implemented this new inlining ability using a
C++ attribute: [[msvc::intrinsic]]

The new attribute will semantically replace a function call with a cast to that function’s
return type if the function definition is decorated with[[msvc::intrinsic]]

=> extensible to your own such utility functions
youtu.be/idwVQUG6Jqc

https://devblogs.microsoft.com/cppblog/improving-the-state-of-debug-performance-in-c/
https://youtu.be/idwVQUG6Jqc

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 46

Myth #12

The sad state of Debug performance in C++

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 47

Myth #23

C++ will never be a safe language

type safety

bounds safety

lifetime safety

initialization safety

object access safety

thread safety

arithmetic safety

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 48

Myth #23
C++ is under attack... and the community is responding 🤷

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 49

Myth #23

Tradeoffs need to be made...

"To UB, or not to UB"
-- Prince Hamlet

We have not addressed C++ safety until we have eliminated all UB.

We can't completely eliminate UB from C++ (for good reasons*).

C++ will never be a safe language➡

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 50

Myth #23

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 51

Myth #23

An excellent essay on the subject of safety: "If we must, let's talk about safety"

-- Corentin Jabotcor3ntin.github.io/posts/safety/

A cakewalk and eating it too

Borrowing the borrow checker

But we care about safety, right?

Dogma

Down with Safety!

UB

Correct by confusion

++(C++) / Rust

https://cor3ntin.github.io/posts/safety/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 52

Myth #23

Guarantee lifetime safety:

garbage collector 😱

dynamic memory analysis (ASan)

statically enforce rules on references: multiple immutable refs || unique mutable ref

by compiler/language:

• borrow checker (Rust)

• mutable value semantics (Val)

• no direct mutation (Haskell & other pure functional languages)

by tooling (static lifetime analysis):

• clang-tidy

• MSVC

• other commercial analyzers

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 53

Myth #23

AAA (almost always auto)

AAA (almost always analyze)

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 54

Myth #23

youtube.com/watch?v=i8_RfDAEjMs

https://www.youtube.com/watch?v=i8_RfDAEjMs

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 55

Myth #23

ASan FTW !!!

-fsanitizer=address

{ Clang, gcc, MSVC } youtube.com/watch?v=yJLyANPHNaA

https://www.youtube.com/watch?v=yJLyANPHNaA

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 56

Myth #23

ASan continue_on_error

NEW: (Visual Studio 2022 v17.6)

Address Sanitizer runtime which provides a new “checked build”.

This new runtime mode diagnoses and reports hidden memory safety errors,  
with zero false positives, as your app runs. youtube.com/watch?v=i8_RfDAEjMs

devblogs.microsoft.com/cppblog/addresssanitizer-continue_on_error/

https://www.youtube.com/watch?v=i8_RfDAEjMs
https://devblogs.microsoft.com/cppblog/addresssanitizer-continue_on_error/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 57

Myth #23

Static Analysis lifetime annotations for C++

NEW:

[[clang::lifetimebound]] and [[msvc::lifetimebound]]

youtube.com/watch?v=fe6yu9AQIE4
discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377

https://www.youtube.com/watch?v=fe6yu9AQIE4
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 58

Myth #23

C++ will never be a safe language*

* but it can be much safe(r) with some effort and good tooling 🧰

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 59

Myth #38

Just rewrite it in Rust 🦀

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 60

Myth #38

azure.microsoft.com/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 60

Myth #38

azure.microsoft.com/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

🔒 trust

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 61

Myth #38

Rust already in the Windows 11 kernel (May 2023)

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 62

Myth #38

wikipedia.org/wiki/Rust_for_Linux

Rust in the Linux kernel (since 6.1)

-- with Linus Torvalds' blessing

The first Rust modules start to make their way into the Linux kernel (6.3+)

Ubuntu has done all the work to provide the right toolchain in the distro
and custom kernel patches (SAUCE) that allow easier acquisition and
build of Rust modules.

https://en.wikipedia.org/wiki/Rust_for_Linux

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 63

Myth #38

So this happened 👀 (April 2023)

Porting Windows 11 core components from C++ to Rust

DirectWrite
GDI youtube.com/watch?v=8T6ClX-y2AE&t=2703s

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 64

Myth #38

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 65

Myth #38

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

1st
experiment

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 66

Myth #38

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

Interop Rust and C++

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 67

Myth #38

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

Win32k GDI port to Rust 2nd
experiment

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 68

Myth #38

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

Win32k GDI port to Rust

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 69

Myth #38

Rust Fact vs. Fiction

5 Insights from Google's Rust journey in 2022

opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

Rumor 1: Rust takes more than 6 months to learn – Debunked

Rumor 2: The Rust compiler is not as fast as people would like – Confirmed

Rumor 3: Unsafe code and interop are always the biggest challenges – Debunked

Rumor 4: Rust has amazing compiler error messages – Confirmed

Rumor 5: Rust code is high quality – Confirmed

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 70

Myth #38

Chromium: Rust and C++ interoperability

chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability/

It’s important for Rust to be able to call C++ functions in a way that meets the following
criteria:

No need for unsafe keyword

No overhead in the general case

No boilerplate or redeclarations / No C++ annotations

Broad type support - with safety

Ergonomics - with safety

There's progress in Rust community in solving some of these problems:

➡ see moveit, autocxx and mosaic

https://www.chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability/
https://crates.io/crates/moveit
https://crates.io/crates/autocxx
https://github.com/google/mosaic/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 71

Myth #38

unsafe { 😱 }

youtube.com/watch?v=DG-VLezRkYQ

Rust has more UB than C++ in unsafe{}

because it always assumes pointers do not alias.

https://www.youtube.com/watch?v=DG-VLezRkYQ

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 72

Myth #38

Just rewrite it in Rust 🦀

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 73

Myth #6

Successor languages are going to eat our lunch

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 74

Myth #6

accu.org/journals/overload/30/172/teodorescu/

Val aims:

fast by definition

safe by default

simple

interoperable with C++

whole/part relationships

mutable value semantics

Swift, as it should have been

Carbon aims:

interoperability with C++

better defaults than C++

no function overloading

no exception handling

no multiple inheritance

doesn’t handle raw pointers

doesn’t have constructors

📖 The Year of C++ Successor Languages
-- Lucian Radu Teodorescu

https://accu.org/journals/overload/30/172/teodorescu/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 74

Myth #6

accu.org/journals/overload/30/172/teodorescu/

Val aims:

fast by definition

safe by default

simple

interoperable with C++

whole/part relationships

mutable value semantics

Swift, as it should have been

Carbon aims:

interoperability with C++

better defaults than C++

no function overloading

no exception handling

no multiple inheritance

doesn’t handle raw pointers

doesn’t have constructors

✔ perfect by construction :)
📖 The Year of C++ Successor Languages

-- Lucian Radu Teodorescu

https://accu.org/journals/overload/30/172/teodorescu/

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 75

Myth #6

Successor languages are going to eat our lunch

* it's not a zero sum game - there will be enough food for everyone

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 76

Myth #39

std::ranges are safer than iterators

All our experience with iterators since the 90s, tells us they should be 🙂

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 77

Myth #39

C++20 ranges library is fantastic tool, but watch out for gotchas ⚠

views have reference semantics => all the reference gotchas apply

as always with C++, const is shallow and doesn't propagate (as you might expect)

some functions do caching, eg. begin(), empty(), | filter | drop

don't hold on to views or try to reuse them

safest to use them ad-hoc, as temporaries

if needed, better "copy" them (cheap) for reuse

* the Nico slide :)

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 78

Myth #39

youtube.com/watch?v=qv29fo9sUjY

https://www.youtube.com/watch?v=qv29fo9sUjY

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 79

Myth #39

youtube.com/watch?v=qv29fo9sUjY

Ranges & filter predicate invariant

https://www.youtube.com/watch?v=qv29fo9sUjY

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 80

Myth #39

std::ranges are safer than iterators

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 81

Myth #7

CMake is the gold standard of C++ project systems

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 82

Myth #7

CMake:

"When it works, it's great; when it doesn't you're regretting your life decisions" 🙂

https://twitter.com/pati_gallardo/status/1672137915575545856?s=46&t=dcjdCXT0jeVLLjXhQ3J85A

https://twitter.com/pati_gallardo/status/1672137915575545856?s=46&t=dcjdCXT0jeVLLjXhQ3J85A

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 83

Myth #7

youtube.com/watch?v=1eVJBEV9NTk

CMake Debugger

in Visual Studio and VSCode

https://www.youtube.com/watch?v=1eVJBEV9NTk

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 84

Myth #7

The CMake debugger has now been implemented in VS Code

and merged upstream to Kitware.

CMake Debugger: VS + VSCode + Rider + CLion

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 85

Myth #7

CMake is the gold standard of C++ project systems

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 86

Myth #0

"Before we had [feature], we were nonetheless able to program in C++"

- Pablo Halpern, ACCU Conf 2022 (via Kate Gregory)

New (C++) is the enemy of the old

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 87

New (C++) is the enemy of the old

twitter.com/tvaneerd/status/1387

https://twitter.com/tvaneerd/status/1387631977373765632?s=20&t=PPc9s1KKudr36Os1MIR9nw

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 88

Mythbusting Series

Other C++ Mythbusters

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 89

Other C++ Mythbusters

youtube.com/watch?v=KNqRjzSlUVo

https://www.youtube.com/watch?v=KNqRjzSlUVo

2023 Victor Ciura | @ciura_victor - C++ MythBusters - Strike 2 90

Other C++ Mythbusters

pvs-studio.com/en/blog/posts/cpp/1053/

https://pvs-studio.com/en/blog/posts/cpp/1053/

@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

June 2023

https://twitter.com/ciura_victor

