

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Abstract
 “Regular” is not exactly a new concept. If we reflect back on STL and its design principles, as
best described by Alexander Stepanov in his “Fundamentals of Generic Programming” paper, we
see that regular types naturally appear as necessary foundational concepts in programming.

Why do we need to bother with such taxonomies? Because STL assumes such properties about
the types it deals with and imposes such conceptual requirements for its data structures and
algorithms to work properly.

 STL vocabulary types such as string_view, span, optional, expected etc., raise new questions
regarding values types, whole-part semantics, copies, composite objects, ordering and equality.

 Designing and implementing regular types is crucial in everyday programming, not just library
design. Properly constraining types and function prototypes will result in intuitive usage; conversely,
breaking subtle contracts for functions and algorithms will result in unexpected behavior for the
caller.

 This talk will explore the relation between Regular types (plus other concepts) and STL
constructs, with examples, common pitfalls and guidance.

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

About me

Advanced Installer Clang Power Tools Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io

New venue,
same great C++ conference

2019

GAYLORD ROCKIES
RESORT & CONVENTION CENTER

⏮

I have concerns...

2023

Feedback
matters

🚧
🏗

photo credit: Jon Kalb

@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

Regular, Revisited

https://twitter.com/ciura_victor

2023 Victor Ciura | @ciura_victor - Regular, Revisited 8

Classified

The classes we write:

RAII

Utility

Callable

Wrappers

Function bundles :(

Polymorphic types / Hierarchies

Containers

Values

...
youtube.com/watch?v=fJvPBHErF2U"The Evolution of C++ - A Typescript for C++", Herb Sutter - CppNow 2023

https://www.youtube.com/watch?v=fJvPBHErF2U

2023 Victor Ciura | @ciura_victor - Regular, Revisited 9

Some are more special than others...

2023 Victor Ciura | @ciura_victor - Regular, Revisited 10

v1 ~ 2018

2023 Victor Ciura | @ciura_victor - Regular, Revisited 11

Slide Title
Revisiting Regular Types

abseil.io/blog/20180531-regular-types

Good types are all alike.
Every poorly designed type is poorly defined in its own way.

- adapted with apologies to Leo Tolstoy

Anna Karenina principle to designing C++ types:

〝

Titus Winters, 2018

https://abseil.io/blog/20180531-regular-types

2023 Victor Ciura | @ciura_victor - Regular, Revisited 12

Slide Title

Why are we talking about this ?

Why Regular types ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited 13

Slide Title
Why are we talking about this ?

We shall see that Regular types naturally appear as necessary

foundational concepts in programming and try to investigate how these

requirements fit in the ever expanding C++ standard, bringing new data

structures & algorithms.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 14

Why are we talking about this ?

Even the CppCoreGuidelines preach about this thing:

C.11: Make concrete types Regular

Regular types are easier to understand and reason about than types that are

not regular (irregularities requires extra effort to understand and use).

The C++ built-in types are regular, and so are standard-library classes such

as string, vector, and map.

Concrete classes without assignment and equality can be defined, but they

are (and should be) rare.
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 15

Why are we talking about this ?

Even the CppCoreGuidelines preach about this thing:

T.46: Require template arguments to be at least Semiregular

Reason: Readability.

Preventing surprises and errors.

Most uses support that anyway.

isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 16

Slide Title
Why are we talking about this ?

This talk is not just about Regular types

A moment to reflect back on STL and its design principles,

as best described by Alexander Stepanov in his 1998 paper

“Fundamentals of Generic Programming”

25 years!

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes
Cpp Core

Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes

C++17

Cpp Core
Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes

C++17

C++20

Cpp Core
Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited 17

Slide Title
This talk is not just about Regular types

Values Objects

Concepts Ordering
Relations

Requirements

Equality

Whole-part
semantics

Lifetimes

C++17

C++20

C++23

Cpp Core
Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited 18

Slide Title

Modern C++ API Design

Type Properties

What properties can we use
to describe types ?

Type Families

What combinations of type
properties make useful /

good type designs ?

Titus Winters - Modern C++ API Design

youtube.com/watch?v=tn7oVNrPM8I

https://www.youtube.com/watch?v=tn7oVNrPM8I

2023 Victor Ciura | @ciura_victor - Regular, Revisited 19

Slide Title

Let's start with the beginning...

2,000 BC

😁

2023 Victor Ciura | @ciura_victor - Regular, Revisited 20

Slide Title Four Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

Lectures presented at

A9
 (2012)

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

2023 Victor Ciura | @ciura_victor - Regular, Revisited 21

Slide Title Four Three Algorithmic Journeys

https://www.youtube.com/watch?v=wrmXDxn_Zuc

I. Spoils of the Egyptians (10h)
How elementary properties of commutativity and associativity of addition and
multiplication led to fundamental algorithmic and mathematical discoveries.

II. Heirs of Pythagoras (12h)
How division with remainder led to discovery of many fundamental
abstractions.

III. Successors of Peano (10h)
The axioms of natural numbers and their relation to iterators.

Lectures presented at

A9

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

2023 Victor Ciura | @ciura_victor - Regular, Revisited 22

Slide Title
• 	Egyptian multiplication ~ 1900-1650 BC

• 	Ancient Greek number theory 

• 	Prime numbers 

• 	Euclid’s GCD algorithm 

• 	Abstraction in mathematics 

• 	Deriving generic algorithms 

• 	Algebraic structures 

• 	Programming concepts 

• 	Permutation algorithms 

• 	Cryptology (RSA) ~ 1977 AD

2023 Victor Ciura | @ciura_victor - Regular, Revisited 23

Slide Title

In the beginning there were just 0s and 1s

2023 Victor Ciura | @ciura_victor - Regular, Revisited 24

Slide Title

Datum

A datum is a finite sequence of 0s and 1s

#define

#EoP

Can represent anything...

🍌🍎🌴

2023 Victor Ciura | @ciura_victor - Regular, Revisited 25

Slide Title

Value Type

A value type is a correspondence between

a species (abstract/concrete) and a set of datums.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 26

Slide Title

Value

Value is a datum together with its interpretation.

Eg.

an integer represented in 32-bit two's complement, big endian

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 26

Slide Title

Value

Value is a datum together with its interpretation.

Eg.

an integer represented in 32-bit two's complement, big endian

A value cannot change.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 27

Slide Title

Value Type & Equality

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 27

Slide Title

Value Type & Equality

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

Lemma 2

If a value type is not ambiguous,

representational equality implies equality.
#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 28

Slide Title

Object

An object is a representation of a concrete entity as a value

in computer memory (address & length).

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 28

Slide Title

Object

An object is a representation of a concrete entity as a value

in computer memory (address & length).

An object has a state that is a value of some value type.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 28

Slide Title

Object

An object is a representation of a concrete entity as a value

in computer memory (address & length).

An object has a state that is a value of some value type.

The state of an object can change.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 29

Slide Title

Type

Type is a set of values with the same interpretation function

and operations on these values.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 30

Slide Title

Concept

A concept is a collection of similar types.

#define

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited 31

Slide Title • 	Foundations

• Transformations and Their Orbits

• Associative Operations

• Linear Orderings

• Ordered Algebraic Structures

• Iterators

• Coordinate Structures

• Coordinates with Mutable Successors

• Copying

• Rearrangements

• Partition and Merging

• Composite Objects
elementsofprogramming.com

Free
PDF

http://elementsofprogramming.com

2023 Victor Ciura | @ciura_victor - Regular, Revisited 32

Slide Title Mathematics Really Does Matter

https://www.youtube.com/watch?v=fanm5y00joc

SmartFriends U
 September 27, 2003

One simple algorithm,

refined and improved

over 2,500 years,

while advancing

human understanding

of mathematics

GCD

https://www.youtube.com/watch?v=fanm5y00joc

2023 Victor Ciura | @ciura_victor - Regular, Revisited 33

Slide Title

Hold on !

"I've been programming for over N years,
and I've never needed any math to do it.

I'll be just fine, thank you."

2023 Victor Ciura | @ciura_victor - Regular, Revisited 34

Slide Title

The reason things just worked for you

is that other people thought long and hard

about the details of the type system

and the libraries you are using

... such that it feels natural and intuitive to you

2023 Victor Ciura | @ciura_victor - Regular, Revisited 35

Slide Title

4,000 years of mathematics

It all leads up to...

2023 Victor Ciura | @ciura_victor - Regular, Revisited 36

Slide Title
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Generic programming depends on the decomposition of programs

into components which may be developed separately and

combined arbitrarily, subject only to well-defined interfaces.

〝

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 37

Slide Title
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

Among the interfaces of interest, the most pervasively and unconsciously used,

are the fundamental operators common to all C++ built-in types, as extended

to user-defined types, eg. copy constructors, assignment, and equality.

〝

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 38

Slide Title
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

We must investigate the relations which must hold among these

operators to preserve consistency with their semantics for the

built-in types and with the expectations of programmers.

〝

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 39

Slide Title
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

We can produce an axiomatization of these operators which:

yields the required consistency with built-in types

matches the intuitive expectations of programmers

reflects our underlying mathematical expectations

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 40

Slide Title
Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov
1998

http://stepanovpapers.com/DeSt98.pdf

In other words:

We want a foundation powerful enough to support any sophisticated

programming tasks, but simple and intuitive to reason about.

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 41

Slide Title
Fundamentals of Generic Programming

Is simplicity a good goal ?

We're C++ programmers, are we not ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited 42

Slide Title
Fundamentals of Generic Programming

Is simplicity a good goal ?

I hate it when C++ programmers brag about being able to

reason about some obscure language construct,

proud as if they just discovered some new physical law

:(

2023 Victor Ciura | @ciura_victor - Regular, Revisited 43

Slide Title
Revisiting Regular Types

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

Titus Winters, 2018
abseil.io/blog/20180531-regular-types

https://abseil.io/blog/20180531-regular-types

2023 Victor Ciura | @ciura_victor - Regular, Revisited 43

Slide Title
Revisiting Regular Types

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

This analysis provides us some basis to evaluate non-owning reference

parameters types (like string_view and span) in a practical fashion,

without discarding Regular design.

Titus Winters, 2018
abseil.io/blog/20180531-regular-types

https://abseil.io/blog/20180531-regular-types

2023 Victor Ciura | @ciura_victor - Regular, Revisited 44

Slide Title

Let's go back to the roots...

STL and Its Design Principles

2023 Victor Ciura | @ciura_victor - Regular, Revisited 45

Slide Title STL and Its Design Principles

youtube.com/watch?v=COuHLky7E2Q

Talk presented at Adobe Systems Inc.
January 30, 2002

stepanovpapers.com/stl.pdf

https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 46

Slide Title STL and Its Design Principles

Fundamental Principles

 Systematically identifying and organizing useful algorithms and data structures

 Finding the most general representations of algorithms

 Using whole-part value semantics for data structures

 Using abstractions of addresses (iterators) as the interface between algorithms and data structures

2023 Victor Ciura | @ciura_victor - Regular, Revisited 47

Slide Title

algorithms are associated with a set of common properties

 Eg. { +, *, min, max } => associative operations

 => reorder operands

 => parallelize + reduction

 C++98 std::accumulate()
 C++17 std::transform_reduce()

natural extension of 4,000 years of mathematics

exists a generic algorithm behind every while() or for() loop

STL and Its Design Principles

2023 Victor Ciura | @ciura_victor - Regular, Revisited 48

Slide Title STL and Its Design Principles

STL data structures

 STL data structures extend the semantics of C structures

 two objects never intersect (they are separate entities)

 two objects have separate lifetimes

2023 Victor Ciura | @ciura_victor - Regular, Revisited 49

Slide Title STL and Its Design Principles

STL data structures have whole-part semantics

 copy of the whole, copies the parts

 when the whole is destroyed, all the parts are destroyed

 two things are equal when they have the same number of parts

 and their corresponding parts are equal

2023 Victor Ciura | @ciura_victor - Regular, Revisited 50

Slide Title STL and Its Design Principles

Generic Programming Drawbacks

abstraction penalty (rarely)

implementation in the interface

early binding

horrible error messages (only in 99% of the cases 😄)

duck typing

algorithm could work on some data types, but fail to work/compile on some other new

data structures

👉 We need to fully specify requirements on algorithm types.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 51

Slide Title Named Requirements

cppreference.com/w/cpp/named_req

Examples from STL

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

EqualityComparable, LessThanComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

https://en.cppreference.com/w/cpp/named_req

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

Slide Title Named Requirements

Named requirements are used in the normative text of the C++ standard to

define the expectations of the standard library.

Some* of these requirements have been formalized in C++20 using concepts.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 53

Slide Title C++20 Concepts

cppreference.com/w/cpp/concepts+ concepts in the iterators library, algorithms library, ranges library

https://en.cppreference.com/w/cpp/concepts

2023 Victor Ciura | @ciura_victor - Regular, Revisited 54

Slide Title
What is a Concept, anyway ?

Formal specification of concepts makes it possible to verify that template

arguments satisfy the expectations of a template or function during

overload resolution and template specialization (requirements).

cppreference.com/w/cpp/language/constraints

Each concept is a predicate, evaluated at compile time, and becomes a part

of the interface of a template where it is used as a constraint.

https://en.cppreference.com/w/cpp/language/constraints

2023 Victor Ciura | @ciura_victor - Regular, Revisited 55

Slide Title

What's the Practical Upside ?

If I'm not a library writer 🤓,

Why Do I Care ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited 56

Slide Title

What's the Practical Upside ?

Using STL algorithms & data structures

2023 Victor Ciura | @ciura_victor - Regular, Revisited 56

Slide Title

What's the Practical Upside ?

Using STL algorithms & data structures

Designing & exposing your own vocabulary types
(interfaces, APIs)

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

Slide Title
Using STL - Compare Requirements

cppreference.com/w/cpp/named_req/Compare

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

Slide Title
Using STL - Compare Requirements

cppreference.com/w/cpp/named_req/Compare

What are the requirements for a Compare type ?

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

Slide Title
Using STL - Compare Requirements

cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

Slide Title
Using STL - Compare Requirements

cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

Slide Title
Using STL - Compare Requirements

cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

But what kind of ordering relationship is needed for the elements of the collection ?

🤔

Eg.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

https://en.cppreference.com/w/cpp/named_req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 58

Slide Title
Compare Requirements

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

(a.x < b.x) && (a.y < b.y)🔥

2023 Victor Ciura | @ciura_victor - Regular, Revisited 58

Slide Title
Compare Requirements

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

(a.x < b.x) && (a.y < b.y)🔥

2023 Victor Ciura | @ciura_victor - Regular, Revisited 58

Slide Title
Compare Requirements

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

(a.x < b.x) && (a.y < b.y)🔥

2023 Victor Ciura | @ciura_victor - Regular, Revisited 59

Slide Title

wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

Strict weak ordering

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

2023 Victor Ciura | @ciura_victor - Regular, Revisited 60

Slide Title

cppreference.com/w/cpp/concepts/strict_weak_order

Concept: Strict weak ordering

https://en.cppreference.com/w/cpp/concepts/strict_weak_order

2023 Victor Ciura | @ciura_victor - Regular, Revisited 61

Slide Title
LessThanComparable

cppreference.com/w/cpp/named_req/LessThanComparable

Irreflexivity ∀ a, (a < a)==false

Antisymmetry ∀ a, b, if (a < b)==true => (b < a)==false

Transitivity ∀ a, b, c, if (a < b)==true and (b < c)==true
=> (a < c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true
=> equiv(a,c)==true

where:

equiv(a,b) : (a < b)==false && (b < a)==false

<

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

2023 Victor Ciura | @ciura_victor - Regular, Revisited 62

Slide Title Named Requirements

cppreference.com/w/cpp/named_req

Examples from STL

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

LessThanComparable, EqualityComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer

InputIterator, OutputIterator

ForwardIterator, BidirectionalIterator, RandomAccessIterator

wg21.link/p0898

<

https://en.cppreference.com/w/cpp/named_req
http://wg21.link/p0898

2023 Victor Ciura | @ciura_victor - Regular, Revisited 63

Slide Title
EqualityComparable

cppreference.com/w/cpp/named_req/EqualityComparable

wikipedia.org/wiki/Equivalence_relation

Reflexivity ∀ a, (a == a)==true

Symmetry ∀ a, b, if (a == b)==true => (b == a)==true

Transitivity ∀ a, b, c, if (a == b)==true and (b == c)==true
=> (a == c)==true

The type must work with operator== and the result should have standard semantics.

https://en.cppreference.com/w/cpp/named_req/EqualityComparable
https://en.wikipedia.org/wiki/Equivalence_relation

2023 Victor Ciura | @ciura_victor - Regular, Revisited 64

Slide Title
Concept: EqualityComparable

cppreference.com/w/cpp/concepts/equality_comparable

wikipedia.org/wiki/Equivalence_relation

template< class T, class U >
concept __WeaklyEqualityComparableWith =
 requires(const std::remove_reference_t<T>& t,
 const std::remove_reference_t<U>& u) {
 { t == u } -> boolean-testable;
 { t != u } -> boolean-testable;
 { u == t } -> boolean-testable;
 { u != t } -> boolean-testable;
 };

template< class T >
concept equality_comparable = __WeaklyEqualityComparableWith<T, T>;

https://en.cppreference.com/w/cpp/concepts/equality_comparable
https://en.wikipedia.org/wiki/Equivalence_relation

2023 Victor Ciura | @ciura_victor - Regular, Revisited 65

Slide Title
Equality vs. Equivalence

For the types that are both EqualityComparable and LessThanComparable,

the STL makes a clear distinction between equality and equivalence

where:

 equal(a,b) : (a == b)

 equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

2023 Victor Ciura | @ciura_victor - Regular, Revisited 65

Slide Title
Equality vs. Equivalence

For the types that are both EqualityComparable and LessThanComparable,

the STL makes a clear distinction between equality and equivalence

where:

 equal(a,b) : (a == b)

 equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

Equality is both an equivalence relation and a partial order.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 66

Slide Title
Total ordering relationship

2023 Victor Ciura | @ciura_victor - Regular, Revisited 66

Slide Title
Total ordering relationship

 comp() induces a strict total ordering

on the equivalence classes determined by equiv()

2023 Victor Ciura | @ciura_victor - Regular, Revisited 66

Slide Title
Total ordering relationship

 comp() induces a strict total ordering

on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes

partition the elements of the set,

and are totally ordered by <

2023 Victor Ciura | @ciura_victor - Regular, Revisited 67

Slide Title
LessThanComparable

cppreference.com/w/cpp/named_req/LessThanComparable
<

template< class T, class U >
concept __PartiallyOrderedWith =
 requires(const std::remove_reference_t<T>& t,
 const std::remove_reference_t<U>& u) {
 { t < u } -> boolean-testable;
 { t > u } -> boolean-testable;
 { t <= u } -> boolean-testable;
 { t >= u } -> boolean-testable;
 { u < t } -> boolean-testable;
 { u > t } -> boolean-testable;
 { u <= t } -> boolean-testable;
 { u >= t } -> boolean-testable;
 };

template< class T >
concept totally_ordered = std::equality_comparable<T> &&
 __PartiallyOrderedWith<T, T>;

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

2023 Victor Ciura | @ciura_victor - Regular, Revisited 68

Slide Title

STL assumes equality is always defined (or at least, equivalence relation)

STL algorithms assume Regular data structures

The STL was written with Regularity as its basis

wg21.link/p0898

A Concept Design for the STL
Palo Alto TR
open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

A. Stepanov et al.

http://wg21.link/p0898
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 69

Slide Title
SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

#define

2023 Victor Ciura | @ciura_victor - Regular, Revisited 70

Slide Title
SemiRegular#define

cppreference.com/w/cpp/concepts/semiregular

template <class T>
concept semiregular = std::copyable<T> &&
 std::default_initializable<T>;

template<class T>
concept default_initializable =
 std::constructible_from<T> &&
 requires { T{}; } &&
 requires { ::new T; };

template <class T>
concept copyable =  
 std::copy_constructible<T> &&  
 std::movable<T> &&  
 std::assignable_from<T&, T&> &&  
 std::assignable_from<T&, const T&> &&
 std::assignable_from<T&, const T>;

https://en.cppreference.com/w/cpp/concepts/semiregular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 71

Slide Title
Regular

EqualityComparable

SemiRegular {

+

DefaultConstructible, MoveConstructible, CopyConstructible

MoveAssignable, CopyAssignable, Swappable

Destructible

#define
(aka "Stepanov Regular")

}

2023 Victor Ciura | @ciura_victor - Regular, Revisited 72

Slide Title
Regular#define

template <class T>
concept regular = std::semiregular<T> &&
 std::equality_comparable<T>;

template< class T, class U >
concept __WeaklyEqualityComparableWith =
 requires(const std::remove_reference_t<T>& t,
 const std::remove_reference_t<U>& u) {
 { t == u } -> boolean-testable;
 { t != u } -> boolean-testable;
 { u == t } -> boolean-testable;
 { u != t } -> boolean-testable;
 };

template< class T >
concept equality_comparable = __WeaklyEqualityComparableWith<T, T>;

cppreference.com/w/cpp/concepts/regular

https://en.cppreference.com/w/cpp/concepts/regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 73

Slide Title
Equality

Defining equality is hard 🤕

2023 Victor Ciura | @ciura_victor - Regular, Revisited 74

Slide Title
Equality

Ultimately, Stepanov proposes the following definition:

Two objects are equal if their corresponding parts are equal (applied recursively),

including remote parts (but not comparing their addresses), excluding inessential

components, and excluding components which identify related objects.

stepanovpapers.com/DeSt98.pdf

〝

😓

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 74

Slide Title
Equality

Ultimately, Stepanov proposes the following definition:

Two objects are equal if their corresponding parts are equal (applied recursively),

including remote parts (but not comparing their addresses), excluding inessential

components, and excluding components which identify related objects.

stepanovpapers.com/DeSt98.pdf

〝

😓

“although it still leaves
room for judgement”

http://stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 75

Slide Title
Three-way comparison

operator <=>

🛸 C++20

Bringing consistent comparison operations...

(a <=> b) < 0 if a < b
(a <=> b) > 0 if a > b
(a <=> b) == 0 if a and b are equal/equivalent

2023 Victor Ciura | @ciura_victor - Regular, Revisited 76

Slide Title
Three-way comparison

operator <=>🛸 C++20

The comparison categories for:

It's all about relation strength

🔥

2023 Victor Ciura | @ciura_victor - Regular, Revisited 77

Slide Title
Three-way comparison🛸 C++20

operator<=>

operator!=

operator==

Efficiency ?

Convenience

The problem: implement <=> optimally for "wrapper" types

struct S {
 vector<string> names;
 auto operator<=>(S const&) const = default;
};

<, <=, >, >= synthesized from operator<=>

!= synthesized from operator==

2023 Victor Ciura | @ciura_victor - Regular, Revisited 78

Slide Title
Three-way comparison🛸 C++20

youtube.com/watch?v=8jNXy3K2Wpk

https://www.youtube.com/watch?v=8jNXy3K2Wpk

2023 Victor Ciura | @ciura_victor - Regular, Revisited 79

cpp2

Point2D: @value type = {
 // data members
 // private by default
 // with default values
 x: i32 = 0;
 y: i32 = 0;
 // ...
}

Sometimes,
you just want a value

cpp2/cppfront

2023 Victor Ciura | @ciura_victor - Regular, Revisited 80

Slide Title

Before we get too far with C++20

let's spend a few minutes on an interesting C++17 type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 81

Slide Title
std::optional<T>

Any time you need to express:

- value or not value
- possibly an answer
- object with delayed initialization

Using a common vocabulary type for these cases raises the level of abstraction,
making it easier for others to understand what your code is doing.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 82

Slide Title
std::optional<T>

optional<T> extends T's ordering operations:

< > <= >= == !=

an empty optional compares as less than any optional that contains a T

=> you can use it in some contexts exactly as if it were a T

2023 Victor Ciura | @ciura_victor - Regular, Revisited 83

Slide Title
std::optional<T>

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

Write waaaaay less error checking code

2023 Victor Ciura | @ciura_victor - Regular, Revisited 84

Slide Title

std::optional<T&>

operator=
operator==

😱

But, wait...

2023 Victor Ciura | @ciura_victor - Regular, Revisited 85

Slide Title
std::optional<T&>

References for Standard Library Vocabulary Types - an optional<> case study
wg21.link/p1683

thephd.dev/to-bind-and-loose-a-reference-optional

To Bind and Loose a Reference

📝 Recommendation:

rebinding
shallow const
deep comparison

👉 rebinding optional reference

This is the solution that is seen as a step up from the conservative solution.

It is the version used in boost::optional for over 15 years + many other implementations.

http://wg21.link/p1683
https://thephd.dev/to-bind-and-loose-a-reference-optional

2023 Victor Ciura | @ciura_victor - Regular, Revisited 86

std::optional<T&>

youtube.com/watch?v=6c7pZYP_iIE

https://www.youtube.com/watch?v=6c7pZYP_iIE

2023 Victor Ciura | @ciura_victor - Regular, Revisited 87

Slide Title

youtube.com/watch?v=06VNq_tC-l0

https://www.youtube.com/watch?v=06VNq_tC-l0

2023 Victor Ciura | @ciura_victor - Regular, Revisited 88

Slide Title

An object that can refer to a constant

contiguous sequence of char-like objects

std::string_view

A string_view does not manage the storage that it refers to

Lifetime management is up to the user

C++17

2023 Victor Ciura | @ciura_victor - Regular, Revisited 89

Slide Title
std::string_view is a borrow type

string_view succeeds admirably in the goal of

“drop-in replacement” for const string & parameters.⚠

The problem:

The two relatively old kinds of types are object types and value types

The new kid on the block is the borrow type

string_view was our first “mainstream” borrow type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title
Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title

they lack ownership

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title

they lack ownership

they are short-lived

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title

they lack ownership

they are short-lived

they generally can do without an assignment operator

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title

they lack ownership

they are short-lived

they generally can do without an assignment operator

they generally appear only in function parameter lists

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 90

Slide Title

they lack ownership

they are short-lived

they generally can do without an assignment operator

they generally appear only in function parameter lists

they generally cannot be stored in data structures or  
returned safely from functions (no ownership semantics)

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 91

Slide Title
std::string_view is a borrow type

⚠

string_view is assignable: sv1 = sv2

Assignment has shallow semantics (of course, the viewed strings are immutable)

Meanwhile, the comparison sv1 == sv2 has deep semantics (lexicographic comp)

2023 Victor Ciura | @ciura_victor - Regular, Revisited 92

Slide Title
std::string_view

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

Non-owning reference type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 92

Slide Title
std::string_view

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

Non-owning reference type

When used properly (eg. function parameter),

string_view works well...

as if it is a Regular type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 93

Slide Title
std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

Think "array view" as in std::string_view,

but mutable on underlying data

https://en.cppreference.com/w/cpp/container/span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 94

Slide Title
std::span<T>C++20

https://en.cppreference.com/w/cpp/container/span

A std::span does not manage the storage that it refers to

Lifetime management is up to the user

https://en.cppreference.com/w/cpp/container/span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 95

Slide Title
Historical Background

Comes directly from the C++ Core Guidelines’ GSL and is intended to be a

replacement especially for unsafe C-style (pointer, length) parameter pairs.

We expect to be used pervasively as a vocabulary type for function parameters

in particular.

〝
std::span

span: bounds-safe views for sequences of objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited 96

Slide Title

WWSD

2023 Victor Ciura | @ciura_victor - Regular, Revisited 96

Slide Title

WWSD

What Would Stepanov Do?

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

the meaning of copy construction and copy assignment is to copy the value of the object

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

the meaning of copy construction and copy assignment is to copy the value of the object

the meaning of == and < is to compare the value of the object

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

the meaning of copy construction and copy assignment is to copy the value of the object

the meaning of == and < is to compare the value of the object

copy, assignment, equality are expected to go together (act as built-in types -- intuitively)

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 97

Slide Title
wg21.link/p1085

Should Span be Regular?

"Copy or copy not; there is no shallow" - Master Yoda

overloading operators can be dangerous when you change the common meaning of the operator

the meaning of copy construction and copy assignment is to copy the value of the object

the meaning of == and < is to compare the value of the object

copy, assignment, equality are expected to go together (act as built-in types -- intuitively)

when designing a class type, where possible it should be a Regular type (see EoP)

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title
wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

but is span a value ? do we need a deep compare ?

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

but is span a value ? do we need a deep compare ?

std::span is trying to act like a collection of the elements over which it spans

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

but is span a value ? do we need a deep compare ?

std::span is trying to act like a collection of the elements over which it spans

but it's not Regular !

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 98

Slide Title

operator= (copy) is shallow (just pointer and size are copied)

we could make operator== deep (elements in the span are compared with std::equal()), 

just like std::string_view

however string_view can't modify the elements it points at (const) 

=> the shallow copy of string_view is similar to a copy-on-write optimization

but is span a value ? do we need a deep compare ?

std::span is trying to act like a collection of the elements over which it spans

but it's not Regular !

basically std::span has reference semantics

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title
wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

shallow const => shallow operator==

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

shallow const => shallow operator==

but shallow operator== might be really confusing to users (especially because of string_view)

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

shallow const => shallow operator==

but shallow operator== might be really confusing to users (especially because of string_view)

final decision was to REMOVE operator== completely

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 99

Slide Title

deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

all parts of the type that constitute its value (eg. participate in == and copy)

deep equality means the value of span are the elements it spans, not { ptr + size }

if we want span to act like a lightweight representation of the elements it references: 

=> we need to have a shallow operator== (just like smart pointers)

shallow const => shallow operator==

but shallow operator== might be really confusing to users (especially because of string_view)

final decision was to REMOVE operator== completely

wg21.link/p1085

Should Span be Regular?

http://wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited 100

Slide Title
A Strange Beast

std::span - a case of unmet expectations...

Users of the STL can reasonably expect span to be a drop-in replacement for

std::vector | std::array

And that happens to be mostly the case…

Until of course, you try to copy it or change its value,  

then it stops acting like a container :(

2023 Victor Ciura | @ciura_victor - Regular, Revisited 100

Slide Title
A Strange Beast

std::span - a case of unmet expectations...

Users of the STL can reasonably expect span to be a drop-in replacement for

std::vector | std::array

And that happens to be mostly the case…

Until of course, you try to copy it or change its value,  

then it stops acting like a container :(

std::span is Regular SemiRegular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 101

Slide Title
std::span<T>C++20

cor3ntin.github.io/posts/span/Photo credit: Corentin Jabot
📖

https://cor3ntin.github.io/posts/span/

2023 Victor Ciura | @ciura_victor - Regular, Revisited 102

Slide Title
Non-owning reference types

like string_view or span

You need more contextual information when working
on an instance of this type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 102

Slide Title
Non-owning reference types

like string_view or span

You need more contextual information when working
on an instance of this type

Things to consider:

shallow copy ?

shallow / deep compare ?

const / mutability ?

operator==

2023 Victor Ciura | @ciura_victor - Regular, Revisited 103

Slide Title

Have reference semantics,

but without the “magic” that can make references safer

(for example lifetime extension)

Non-owning reference types

like string_view or span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 104

Lifetime

👉

std::string Name() {
 return std::string("some long runtime value string");
}

const string & str = Name();
std::print("{}", str);

string_view sv = Name();
std::print("{}", sv);

const lvalue ref binds to rvalue and provides lifetime extension

string_view doesn't extend the lifetime of the rvalue

For short strings this issue might be hard to detect due to SSO.

Problem becomes obvious with longer dynamically allocated strings.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 105

Slide Title

2023 Victor Ciura | @ciura_victor - Regular, Revisited 106

Slide Title
📯 Call To Action

2023 Victor Ciura | @ciura_victor - Regular, Revisited 106

Slide Title
📯 Call To Action

Make your value types Regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 106

Slide Title
📯 Call To Action

Make your value types Regular

The best Regular types are those that model built-ins
most closely and have no dependent preconditions.

2023 Victor Ciura | @ciura_victor - Regular, Revisited 106

Slide Title
📯 Call To Action

Make your value types Regular

The best Regular types are those that model built-ins
most closely and have no dependent preconditions.

Think int or std::string or std::vector

2023 Victor Ciura | @ciura_victor - Regular, Revisited 107

Slide Title
📯 Call To Action

2023 Victor Ciura | @ciura_victor - Regular, Revisited 107

Slide Title
📯 Call To Action

For non-owning reference types like string_view or span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 107

Slide Title
📯 Call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

2023 Victor Ciura | @ciura_victor - Regular, Revisited 107

Slide Title
📯 Call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

Try to restrict these types to SemiRegular

to avoid confusion for your users

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title

Bonus Slides

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

One particularly sensitive topic about handling C++ values

is that they are all conservatively considered non-relocatable.

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory.

For example, an int32 is relocatable because moving its 4 bytes would preserve its
actual value, so the address of that value does not matter to its integrity.

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

C++'s assumption of non-relocatable values hurts everybody

for the benefit of a few questionable designs.

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Slide Title Object Relocation

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#object-relocation

Only a minority of objects are genuinely non-relocatable:

- objects that use internal pointers

- objects that need to update observers that store pointers to them

@ciura_victor
Victor Ciura

Principal Engineer
Visual C++ 🐘 @ciura_victor@hachyderm.io

Regular, Revisited

https://twitter.com/ciura_victor

