Regular, Revisited

Meeting C++

November 2023

Victor Ciura
Y @ciura_victor Principal Engineer

% Q@ciura_victor@hachyderm.io Visual C++

https://twitter.com/ciura_victor

Abstract

“Regular” is not exactly a new concept. If we reflect back on STL and its design principles, as
best described by Alexander Stepanov in his “Fundamentals of Generic Programming” paper, we
see that regular types naturally appear as necessary foundational concepts in programming.

Why do we need to bother with such taxonomies? Because STL assumes such properties about
the types it deals with and imposes such conceptual requirements for its data structures and
algorithms to work properly.

STL vocabulary types such as string_view, span, optional, expected etc., raise new questions
regarding values types, whole-part semantics, copies, composite objects, ordering and equality.

Designing and implementing regular types is crucial in everyday programming, not just library
design. Properly constraining types and function prototypes will result in intuitive usage; conversely,
breaking subtle contracts for functions and algorithms will result in unexpected behavior for the
caller.

This talk will explore the relation between Regular types (plus other concepts) and STL
constructs, with examples, common pitfalls and guidance.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

About me

x

Advanced Installer Clang Power Tools Visual C++

W @ciura_victor
& @ciura_victor@hachyderm.io

2023 Victor Ciura | @ciura_victor - Regular, Revisited X

Classified

. Fro
The classes we write: , m
et
writing these, 2
- RAI (a) by convention andh property 017
: S ent
o (b) described as E“§ ‘ traits
< Utility instead of as cOGE type

<~ Callable , enum
CORBA iterator/ class

interface range S| base
dSS

- Wrappers

| functor/
© Function bundles :(dv:;’;‘ic container callabl

- Polymorphic types / Hierarchies COM

~ Containers vaney clasyy

POD
o Values value

»

"The Evolution of C++ - A Typescript for C++", Herb Sutter - CopNow 2023 youtube.com/watch?v=fJvPBHErF2U

2023 Victor Ciura | @ciura_victor - Regular, Revisited 2

https://www.youtube.com/watch?v=fJvPBHErF2U

Some are more special than others...

2023 Victor Ciura | @ciura_victor - Regular, Revisited

vl ~ 2018

cppcon | 2018

Regular Types
and
Why Do | Care ?

VICTOR CIURA

September, 2018

Regular Types <& Victor Ciura
and Why Do | Care ? Technical Lead, Advanced Installer

www.advancedinstaller.com

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Revisiting Regular Types

Anna Karenina principle to designing C++ types:

Y Good types are all alike.
Every poorly designed type is poorly defined in its own way.

- adapted with apologies to Leo Tolstoy

Titus Winters, 2018
abseil.io/blog/20180531-regular-types

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://abseil.io/blog/20180531-regular-types

Why Regular types ?

Why are we talking about this ?

Why are we talking about this ?

We shall see that Regular types naturally appear as necessary
foundational concepts in programming and try to investigate how these
requirements fit in the ever expanding C++ standard, bringing new data

structures & algorithms.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Why are we talking about this ?

Even the CppCoreGuidelines preach about this thing:

C.11: Make concrete types Regular

Regular types are easier to understand and reason about than types that are

not regular (irregularities requires extra effort to understand and use).

The C++ built-in types are regular, and so are standard-library classes such

as string, vector, and map.

Concrete classes without assignment and equality can be defined, but they

are (and should be) rare.

isocpp.qgithub.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited

8

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-regular

Why are we talking about this ?

Even the CppCoreGuidelines preach about this thing:

T.46: Require template arguments to be at least Semiregular

Reason: Readability.
Preventing surprises and errors.

Most uses support that anyway.

isocpp.qgithub.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 9

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-regular

Why are we talking about this ?

This talk is not just about Regular types

A moment to reflect back on STL and its design principles,

as best described by Alexander Stepanov in his 1998 paper

“Fundamentals of Generic Programming”

25 years!

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values Objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values Objects

Concepts

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values Objects
Ordering
Loncepts Relations

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values Objects
Ordering
Loncepts Relations

Requirements

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values Objects

Ordering

Loncepts Relations
Requirements

Equality

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values -
Objects Whole-part
Drders semantics
rdering
Loncepts Relations
Requirements

Equality

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values -
Objects Whole-part
Drders semantics
rdering
Concepts Relations
Requirements | |
L1ifetimes

Equality

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values -

Objects Whole-part
Drders semantics

rdering

Concepts Relations

Requirements | |
L1ifetimes
Cpp Core

Equality Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values -
b
Objects Whole-part
Ceely Do semantics
rdering
Concepts Relations
Requirements | |
L1ifetimes
Cpp Core

Equality Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values -
b
Objects Whole-part
Ceely Do semantics
rdering
Concepts Relations
Requirements Ce220 | |
L1 fetimes
Cpp Core

Equality Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited

This talk is not just about Regular types

Values :
Objects Whole-part
Ceely Do semantics
rdering
Loncepts Relations C++23
Requirements Cael0 | |
L1fetimes
Cpp Core

Equality Guidelines

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Modern C++ API Design

Type Properties Type Families

What properties can we use What combinations of type
to describe types ? properties make useful /
good type designs ?

Titus Winters - Modern C++ API Design
youtube.com/watch?v=tn7o0VNrPM8|

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://www.youtube.com/watch?v=tn7oVNrPM8I

Let's start with the beginning...

2,000 BC

AA

=

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Foeur Three Algorithmic Journeys

Objectives

Lectures presented at

(2012)

-

-

—

4 P Pl o) 10:02/46:46 | B & Ol

Spoils of the Egyptians: Lecture 1 Part 1 https://www.youtube.com/watch?v=wrmXDxn Zuc

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

Foeur Three Algorithmic Journeys

l. Spoils of the Egyptians (10h)
How elementary properties of commutativity and associativity of addition and
multiplication led to fundamental algorithmic and mathematical discoveries.

Il. Heirs of Pythagoras (12h)
How division with remainder led to discovery of many fundamental
abstractions.

lll. Successors of Peano (10h)
The axioms of natural numbers and their relation to iterators.

Lectures presented at

A9

https://www.youtube.com/watch?v=wrmXDxn Zuc

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://www.youtube.com/watch?v=wrmXDxn_Zuc&list=PLHxtyCq_WDLV5N5zUCBCDC2WqF1VBDGg1

ALEXANDER A. STE
« Egyptian multiplication ~ 1900-1650 BC DANIEL E. ROS E ,.;

* Ancient Greek number theory
* Prime numbers

* Euclid’s GCD algorithm

e Abstraction in mathematics

e Deriving generic algorithms

* Algebraic structures M ATH E M ATI C S\

* Programming concepts \

 Permutation algorithms G E N E R I C \
e Cryptology (RSA) ~ 1977 AD P ROG RAMM I N G

2023 Victor Ciura | @ciura_victor - Regular, Revisited

In the beginning there were just Os and 1s

#define
Datum

A datum is a finite sequence of Os and 1s

Can represent anything...

- J 1
'. \ (é
\

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Value Type

A value type Is a correspondence between

a species (abstract/concrete) and a set of datums.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Value

Value Is a datum together with its interpretation.

EQ.

an integer represented Iin 32-bit two's complement, big endian

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Value

Value Is a datum together with its interpretation.

EQ.

an integer represented Iin 32-bit two's complement, big endian

A value cannot change.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Value Type & Equality

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Value Type & Equality

Lemma 1

If a value type is uniquely represented,

equality implies representational equality.

Lemma 2

If a value type is not ambiguous,

representational equality implies equality.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Object

An object is a representation of a concrete entity as a value

iIn computer memory (address & length).

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Object

An object is a representation of a concrete entity as a value

iIn computer memory (address & length).

An object has a state that is a value of some value type.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Object

An object is a representation of a concrete entity as a value

iIn computer memory (address & length).

An object has a state that is a value of some value type.

The state of an object can change.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Type

Type is a set of values with the same interpretation function

and operations on these values.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define
Concept

A concept is a collection of similar types.

#EoP

2023 Victor Ciura | @ciura_victor - Regular, Revisited

 Foundations

* Transformations and Their Orbits
* Associative Operations

* Linear Orderings

* Ordered Algebraic Structures

e |terators

» Coordinate Structures

* Coordinates with Mutable Successors
» Copying

 Rearrangements

Free

* Partition and Merging PDF

 Composite Objects |
elementsofprogramming.com

2023 Victor Ciura | @ciura_victor - Regular, Revisited ' 25

http://elementsofprogramming.com

Mathematics Really Does Matter

GCD

One simple algorithm,
refined and improved
over 2,500 years,
while advancing
human understanding
of mathematics

SmartFriends U
September 27, 2003

P Pl o) 36:06/1:56:22

Greatest Common Measure: The Last 2500 Years https://www.youtube.com/watch?v=fanm5y00joc

2023 Victor Ciura | @ciura_victor - Regular, Revisited 260

https://www.youtube.com/watch?v=fanm5y00joc

Hold on!

'I've been programming for over N years,
and |'ve never needed any math to do |It.
I'll be just fine, thank you."

2023 Victor Ciura | @ciura_victor - Regular, Revisited

The reason things just worked for you
IS that other people thought long and hard
about the detalls of the type system
and the libraries you are using

... such that it feels natural and intuitive to you

2023 Victor Ciura | @ciura_victor - Regular, Revisited

4,000 years of mathematics

It all leads up to...

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

' Generic programming depends on the decomposition of programs
iINnto components which may be developed separately and

combined arbitrarily, subject only to well-defined interfaces.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

\
Among the interfaces of interest, the most pervasively and unconsciously used,

are the fundamental operators common to all C++ built-in types, as extended

to user-defined types, eg. copy constructors, assignment, and equality.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

" We must iInvestigate the relations which must hold among these

operators to preserve consistency with their semantics for the

bullt-in types and with the expectations of programmers.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

We can produce an axiomatization of these operators which:

~ yields the required consistency with built-in types
-~ matches the intuitive expectations of programmers

© reflects our underlying mathematical expectations

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming
http://stepanovpapers.com/DeSt98.pdf

James C. Dehnert and Alexander Stepanov
1998

In other words:

We want a foundation powerful enough to support any sophisticated

programming tasks, but simple and intuitive to reason about.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://stepanovpapers.com/DeSt98.pdf

Fundamentals of Generic Programming

Is simplicity a good goal ?

We're C++ programmers, are we not ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Fundamentals of Generic Programming

Is simplicity a good goal ?

| hate it when C++ programmers brag about being able to
reason about some obscure language construct,

proud as If they just discovered some new physical law

]|

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Revisiting Regular Types

abseil.io/blog/20180531 -reqular-types
Titus Winters, 2018

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://abseil.io/blog/20180531-regular-types

Revisiting Regular Types

abseil.io/blog/20180531 -reqular-types
Titus Winters, 2018

This essay is both the best up to date synthesis of the original Stepanov paper,

as well as an investigation on using non-values as if they were Regular types.

This analysis provides us some basis to evaluate non-owning reference

parameters types (like string_viewand span) in a practical fashion,

without discarding Regu Lar design.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://abseil.io/blog/20180531-regular-types

Let's go back to the roots...

STL and Its Design Principles

2023 Victor Ciura | @ciura_victor - Regular, Revisited

STL and Its Design Principles

Talk presented at Adobe Systems Inc.
January 30, 2002

stepanovpapers.com/stl.pdf

> > o) 811/1:39:24 @& O]

Alexander Stepanov: STL and Its Design Principles youtube.com/watch?v=COuHLky7E2Q

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://www.youtube.com/watch?v=COuHLky7E2Q
http://stepanovpapers.com/stl.pdf

STL and Its Design Principles

Fundamental Principles

o Systematically identifying and organizing useful algorithms and data structures
~ Finding the most general representations of algorithms
- Using whole-part value semantics for data structures

© Using abstractions of addresses (iterators) as the interface between algorithms and data structures

2023 Victor Ciura | @ciura_victor - Regular, Revisited

STL and Its Design Principles

~ algorithms are associated with a set of common properties

Eg. { +, *, mln, max } => associative operations
=> reorder operands

=> parallelize + reduction

C++98 std: :accumulate()
C++17 std: :transform_reduce()

~ natural extension of 4,000 years of mathematics

~ exists a generic algorithm behind every while() or for() loop

2023 Victor Ciura | @ciura_victor - Regular, Revisited

STL and Its Design Principles

STL data structures

o STL data structures extend the semantics of C structures
~ two objects never intersect (they are separate entities)

~ two objects have separate lifetimes

2023 Victor Ciura | @ciura_victor - Regular, Revisited

STL and Its Design Principles

STL data structures have whole-part semantics

- copy of the whole, copies the parts
-~ when the whole is destroyed, all the parts are destroyed

~ two things are equal when they have the same number of parts

and their corresponding parts are equal

2023 Victor Ciura | @ciura_victor - Regular, Revisited

whole-part semantics

The C++ Conference 2 2 September 12th-16th I

Achieving value semantics today | decoupling an object graph

What's a value? You decide ' » name_Llen
That choice determines the meaning of a type. name P’ I) I T I \ ‘ -
cache ~
> N—
& Y,
Dave Abrahams
Values: Safety, Reqularity, B -

Independence, and the | | |
Video Sponsorship Provided By:

Future of Programming

youtube.com/watch?v=QthAU-t3PQ4

2023 Victor Ciura | @ciura_victor - Regular, Revisited 44

https://www.youtube.com/watch?v=QthAU-t3PQ4

STL and Its Design Principles

Generic Programming Drawbacks

© abstraction penalty (rarely)

~ Implementation in the interface

~ early binding

~ horrible error messages (only in 99% of the cases &)

© duck typing

~ algorithm could work on some data types, but fail to work/compile on some other new

data structures

.~ We need to fully specify requirements on algorithm types.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Named Requirements
Examples from STL

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible
EqualityComparable, LessThanComparable
Predicate, BinaryPredicate
Compare
FunctionObject
Container, SequenceContainer, ContiguousContainer, AssociativeContainer
Inputlterator, Outputlterator

ForwardIterator, Bidirectionallterator, RandomAccessIterator

cppreference.com/w/cpp/named reqg

2023 Victor Ciura | @ciura_victor - Regular, Revisited 46

https://en.cppreference.com/w/cpp/named_req

Named Requirements

Named requirements are used in the normative text of the C++ standard to

define the expectations of the standard library.

Some™ of these requirements have been formalized in C++20 using concepts.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Core language concepts

Defined in header <concepts> C + +20 C O n ce pts Object COncepts

same_as (C++20)

Defined in header <concepts>

derived from (C++20) bl
movablLe (C++20)

convertible to (C++20)

, copyable (C++20)

common_reference_with (C++20)
common_with (C++20) Comparison concepts semiregular (C++20)
integral (C++20) Defined in header <concepts>
signed integral (C++20) boolean-testable (C++20) regular (C++20)

. . equality comparable
unsigned integral (C++20) e .

Jned_1ntes equality comparable with'“**2? Callable concepts
floating_point (C++20) totally ordered (C420) Defined in header <concepts>

- - o+ ,
assignable_from (C++20) totally_ordered_with invocable
Defined in header <compare> regular invocable (C++20)
swappable three way comparable -
. o1 (C++20) _way_comp

swappable_with three_way comparable with (¢* 120 predicate (C++20)

destructible (C++20)

relation (C++20)
constructible from(C++20)

equivalence relation (C++20)
default _initializable (C++20)

move constructible (C++20) strict_weak_order (C++20)

copy_constructible (C++20) : : : : : :
+ concepts in the iterators library, algorithms library, ranges library cppreference.com/w/cpp/concepts

2023 Victor Ciura | @ciura_victor - Regular, Revisited 438

https://en.cppreference.com/w/cpp/concepts

What is a Concept, anyway ?

Formal specification of concepts makes it possible to verify that template
arguments satisfy the expectations of a template or function during

overload resolution and template specialization (requirements).

Each concept is a predicate, evaluated at compile time, and becomes a part

of the interface of a template where it is used as a constraint.

cppreference.com/w/cpp/language/constraints

2023 Victor Ciura | @ciura_victor - Regular, Revisited 49

https://en.cppreference.com/w/cpp/language/constraints

What's the Practical Upside ?

If I'm not a library writer ,
Why Do | Care ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited

What's the Practical Upside ?

Using STL algorithms & data structures

2023 Victor Ciura | @ciura_victor - Regular, Revisited

What's the Practical Upside ?

Using STL algorithms & data structures

Designing & exposing your own vocabulary types
(interfaces, APIs)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Using STL - Compare Requirements
EQ.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

cppreference.com/w/cpp/named req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

https://en.cppreference.com/w/cpp/named_req/Compare

Using STL - Compare Requirements
EQ.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

What are the requirements for a Compare type ?

cppreference.com/w/cpp/named req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

https://en.cppreference.com/w/cpp/named_req/Compare

Using STL - Compare Requirements
EQ.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

What are the requirements for a Compare type ?

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

cppreference.com/w/cpp/named req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

https://en.cppreference.com/w/cpp/named_req/Compare

Using STL - Compare Requirements
EQ.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

What are the requirements for a Compare type ?

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

bool comp(*1terl, *iterl);

cppreference.com/w/cpp/named req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

https://en.cppreference.com/w/cpp/named_req/Compare

Using STL - Compare Requirements
EQ.

template<class RandomIt, class Compare>
constexpr void std::sort(RandomIt first, RandomIt last, Compare comp);

What are the requirements for a Compare type ?

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

bool comp(*1terl, *iterl);

But what kind of ordering relationship is needed for the e/lements of the collection ?

~ -
L

e

cppreference.com/w/cpp/named req/Compare

2023 Victor Ciura | @ciura_victor - Regular, Revisited 52

https://en.cppreference.com/w/cpp/named_req/Compare

Compare Requirements

A—
L

Partial ordering relationship is not enough ' ¢

Compare needs a stronger constraint

’A (a.x < b.x) & (a.y < b.y)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Compare Requirements

A—
L

Partial ordering relationship is not enough ' ¢

Compare needs a stronger constraint

’A (a.x < b.x) & (a.y < b.y)

Strict weak ordering = Partial ordering + Transitivity of Equivalence

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Compare Requirements

A—
L

Partial ordering relationship is not enough ' ¢

Compare needs a stronger constraint

’(\ (a.x < b.x) & (a.y < b.y)

Strict weak ordering = Partial ordering + Transitivity of Equivalence

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Strict weak ordering

wikipedia.org/wiki/Weak ordering#Strict weak orderings

Irreflexivity V a, comp(a,a)==false

VY a, b, ¢, if comp(a,b)==true and comp(b,c)==true
=> comp(a,c)==true

Transitivity of éV a, b, ¢, 1f equiv(a,b)==true and equiv(b,c)==true
equivalence => equiv(a,c)==true

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Concept: Strict weak ordering

std::Strict weak order

Defined in header <concepts>

template< class R, class T, class U >
concept strict weak order = std::relation<R, T, U>;

(since C++20)

The concept strict weak order<R, T, U> specifies that the relation R imposes a strict weak ordering on its
arguments.

Semantic requirements
A relation r is a strict weak ordering if

e itis irreflexive: forall x, r(x, x) is false ;
e it is transitive: forall a, b and c,if r(a, b) and r(b, c) are both true then r(a, c) is true;
e let e(a, b) be !r(a, b) & !r(b, a) , then e istransitive: e(a, b) && e(b, c) implies e(a, c) .

Under these conditions, it can be shown that e is an equivalence relation, and r induces a strict total ordering on the
equivalence classes determined by e .

cppreference.com/w/cpp/concepts/strict weak order

2023 Victor Ciura | @ciura_victor - Regular, Revisited 55

https://en.cppreference.com/w/cpp/concepts/strict_weak_order

& LessThanComparable

cppreference.com/w/cpp/named reqg/LessThanComparable

Irreflexivity V a, (a < a)==false

éV a, b, ¢, 1f (a < b)==true and (b < c)==true
=> (a < c)==true

Transitivity of éV a, b, ¢, 1f equiv(a,b)==true and equiv(b,c)==true
equivalence §=> equiv(a,c)==true

Transitivity

where:

equiv(a,b) : (a < b)==false && (b < a)==false

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

Named Requirements wg21.link/p0898

Examples from STL

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible

& LessThanComparable,{ EqualityComparable

Predicate, BinaryPredicate

Compare

FunctionObject

Container, SequenceContainer, ContiguousContainer, AssociativeContainer
InputIterator, Outputlterator

ForwardIterator, Bidirectionallterator, RandomAccessIterator

cppreference.com/w/cpp/named req

2023 Victor Ciura | @ciura_victor - Regular, Revisited 57

https://en.cppreference.com/w/cpp/named_req
http://wg21.link/p0898

EqualityComparable

cppreference.com/w/cpp/named reg/EqualityComparable

Reflexivity

Symmetry

Transitivity

§v a, (a == a)==true

Va, b, if (a == b)=

§v a, b, ¢, 1f (a ==
§=> (a == c)==true

=true => (b == a)==true

b)==true and (b == c)==true

The type must work with operator== and the result should have standard semantics.

wikipedia.org/wiki/Equivalence relation

2023 Victor Ciura | @ciura_victor -

Regular, Revisited

58

https://en.cppreference.com/w/cpp/named_req/EqualityComparable
https://en.wikipedia.org/wiki/Equivalence_relation

Concept: EqualityComparable

cppreference.com/w/cpp/concepts/equality comparable

template< class T, class U >

concept = WeaklyEqualityComparableWith =
requires(const std::remove_reference_t<T>& t,

const std::remove reference t<U>& u) {
== u y —> boolean-testable;

'= u } —> boolean-testable;

== t } —> boolean-testable;
t } —> boolean-testable;

e S .
C c ~+
1

b

template< class T >
concept equality comparable = WeaklyEqualityComparableWith<T, T>;

wikipedia.org/wiki/Equivalence relation

2023 Victor Ciura | @ciura_victor - Regular, Revisited 59

https://en.cppreference.com/w/cpp/concepts/equality_comparable
https://en.wikipedia.org/wiki/Equivalence_relation

Equality vs. Equivalence

For the types that are both Equali1tyComparable and LessThanComparable,

the STL makes a clear distinction between equality and equivalence

where:
equalCa,b) : (a == b)
equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Equality vs. Equivalence

For the types that are both Equali1tyComparable and LessThanComparable,

the STL makes a clear distinction between equality and equivalence

where:
equalCa,b) : (a == b)
equiv(a,b) : (a < b)==false && (b < a)==false

Equality is a special case of equivalence

Equality I1s both an equivalence relation and a partial order.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Total ordering relationship

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Total ordering relationship

comp() induces a strict total ordering
on the equivalence classes determined by equiv()

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Total ordering relationship

comp() induces a strict total ordering
on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes
partition the elements of the set,
and are totally ordered by <

2023 Victor Ciura | @ciura_victor - Regular, Revisited

& LessThanComparable

cppreference.com/w/cpp/named reqg/LessThanComparable

template< class T, class U >
concept PartiallyOrderedwWith =
requires(const std::remove_reference_t<T>& t,
const std::remove reference t<U>& u) {

{ t < u } —> boolean-testable;
{ t > u } —> boolean-testable;
{ t <= u } —> boolean-testable;
{ t >= u } —> boolean-testable;
{ u< t } —> boolean-testable;
{ u> t } — boolean-testable;
{ u<=1t } —> boolean-testable;
{ u>=1t } —> boolean-testable;

b

template< class T >
concept totally ordered = std:i:equality comparable<T> &&
__PartiallyOrderedWith<T, T>;

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://en.cppreference.com/w/cpp/named_req/LessThanComparable

A Concept Design for the STL

Palo Alto TR
open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

A. Stepanov et al.

STL assumes equality is always defined (or at least, equivalence relation)
STL algorithms assume Regu lLar data structures

The STL was written with Reqgularity as its basis

wg21.link/p0898

2023 Victor Ciura | @ciura_victor - Regular, Revisited 63

http://wg21.link/p0898
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf

#define SemiRegular

DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignhable, CopyAssignable, Swappable
Destructible

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#deftine SemiRegular

template <class T>
concept semiregular = std::copyable<T> &&
std: :default_initializable<T>;

template <class T> template<class T>
concept copyable = concept default _initializable =

B std::constructible from<T> &&
requires { T{}; } &&
requires { ::new T; };

std: :copy_constructible<T> &&

std: :movable<T> &&

std: :assignable_from<T&, T&> &&
std::assignable_from<T&, const T&> &&
std::assignhable_from<T&, const T>;

cppreference.com/w/cpp/concepts/semiregular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 65

https://en.cppreference.com/w/cpp/concepts/semiregular

#define Regular

(aka "Stepanov Regular™)

SemiRegular {
DefaultConstructible, MoveConstructible, CopyConstructible
MoveAssignable, CopyAssignable, Swappable
Destructible

-

EqualityComparable

2023 Victor Ciura | @ciura_victor - Regular, Revisited

#define Regular

template <class T>
concept regular = std::semiregular<T> &&
std: :equality_comparable<T>;

template< class T, class U >
concept _ WeaklyEqualityComparableWith =
requires(const std::remove_reference_t<T>& t,
const std::remove reference t<U>& u) {

{ t == u } —=> boolean-testable;

{ t '= u } —> boolean-testable;

{ u==1t } -> boolean-testable;

{u'=1t } —-> boolean-testable;
&

template< class T >
concept equality_comparable = _ WeaklyEqualityComparableWith<T, T=>;

cppreference.com/w/cpp/concepts/reqular

2023 Victor Ciura | @ciura_victor - Regular, Revisited 6/

https://en.cppreference.com/w/cpp/concepts/regular

Equality

Defining equality is hard @

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Equality

Ultimately, Stepanov proposes the following definition:

" Two objects are equal if their corresponding parts are equal (applied recursively),
including remote parts (but not comparing their addresses), excluding inessential

components, and excluding components which identify related objects.

stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 69

http://stepanovpapers.com/DeSt98.pdf

Equality

“although it still leaves

room for judgement”

Ultimately, Stepanov proposes the following definition:

" Two objects are equal if their corresponding parts are equal (applied recursively),
including remote parts (but not comparing their addresses), excluding inessential

components, and excluding components which identify related objects.

stepanovpapers.com/DeSt98.pdf

2023 Victor Ciura | @ciura_victor - Regular, Revisited 69

http://stepanovpapers.com/DeSt98.pdf

g C++20 Three-way comparison

Bringing consistent comparison operations...

operator <=>

(a <=>b) < 0 1f a<b
(a <=>b)> 0 1f a>Db
(a <=> b) == 1f a and b are equal/equivalent

2023 Victor Ciura | @ciura_victor - Regular, Revisited

a C++20 Three-way comparison

The comparison categories for: operator <=>

“— partial_ordering
weak _equality T
n — weak_ordering
?)
strong_equality <« strong_ordering

It's all about relation strength

2023 Victor Ciura | @ciura_victor - Regular, Revisited

a C++20 Three-way comparison

-

<, <=, >, >= synthesized from operator<=>
I= synthesized from operator==

operator<=>

operator!=
Convenience

operator==

The problem: implement <=> optimally for "wrapper" types

struct S {
vector<string> names;
auto operator<=>(S const&) const = default;

1 wg21.link/P1185

2023 Victor Ciura | @ciura_victor - Regular, Revisited /2

http://wg21.link/P1185

C++20 Three-way comparison

@Cppcun 2019

The C++ Conference Cppcon.org

Using C++20's Three-way Comparison <=> . L
Jonathan Mduller — @foonathan — CCBY 4.0 ‘ Jonathan Muller

Using C++20's
Three-way
Comparison <=>

Jonathan Miiller — @foonathan — CCBY 4.0 Using C++20’s Three-way Comparison <=> CppCon 2019-09-20

youtube.com/watch?v=8jNXy3K2Wpk

2023 Victor Ciura | @ciura_victor - Regular, Revisited

https://www.youtube.com/watch?v=8jNXy3K2Wpk

Sometimes,
you just want a value

-
-
~
S

-
.
\~‘
-
~
3
w
™
-
-
s
bt
‘v
)
|
S

Point2D: @value type = {
// data members
// private by default
// with default values
X: 132 = 0:

y: 132 = 0;
//
h
data members (privat
With default &:pa‘;_tveas ‘M
CPP2/CPPFRONT

’ B
&

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Before we get too far with C++20

let's spend a few minutes on an interesting C+z17 type

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :optional<T>

Any time you need to express:

- value or not value
- POSSIbly an answer
- object with delayed initialization

Using a common vocabulary type for these cases raises the /evel of abstraction,
making it easier for others to understand what your code is doing.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :optional<T>

optional<T> extends T's ordering operations:

< > <= >= == I=

an empty optional compares as less than any optional that contains a T

=> you can use it In some contexts exactlyas ifitwerea T

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :optional<T>

Using std::optional as vocabulary type allows us to simplify code and
compose functions easily.

Write waaaaay less error checking code

2023 Victor Ciura | @ciura_victor - Regular, Revisited

But, walit...

std: :optional <T&>

.

operator=
operator==

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :optional <T&>

-~ References for Standard Library Vocabulary Types - an optional<> case study
wg21.link/p1683

- To Bind and Loose a Reference

thephd.dev/to-bind-and-loose-a-reference-optional

2 Recommendation:

< rebinding

< shallow const

o deep comparison

-

& rebinding optional reference

This is the solution that is seen as a step up from the conservative solution.
It is the version used in boost:.optional for over 15 years + many other implementations.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1683
https://thephd.dev/to-bind-and-loose-a-reference-optional

std::optional<T&>

Option<&Ts

| e—

> Pl € 000/1813 B O [I -

Choose the Right Option
@ Logan Smith A subscribed “ 75 31K G ~> Share X clip =+ Save

15.7K subscribers

outube.com/watch?v=6c¢c7pZYP ilE

https://www.youtube.com/watch?v=6c7pZYP_iIE

N(;)rpth And Then() Some(T) think-cell” g

2023

Lifting any function

lifted f

Victor Ciura

—— T —

2023 Victor Ciura | @ciura_victor - And Then() Some(T)

PONorplca o) 24:24/56:48

And Then() Some(T) Functional Adventures With C++23 std::optional and std::expected - Victor Ciura

youtube.com/watch?v=06VNg tC-I0

2023 Victor Ciura | @ciura_victor - Regular, Revisited 32

https://www.youtube.com/watch?v=06VNq_tC-l0

Ce+17 std: :string_view

An object that can refer to a constant

contiguous sequence of char-like objects

A string_view does not manage the storage that it refers to

Lifetime management is up to the user

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :string_viewis a borrow type

string_view succeeds admirably in the goal of
“drop-in replacement” for const string & parameters.

The problem:
The two relatively old kinds of types are object types and value types
The new kid on the block is the borrow type

string_view was our first “mainstream” borrow type

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

o they lack ownership

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

o they lack ownership

© they are short-lived

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

o they lack ownership
© they are short-lived

- they generally can do without an assignment operator

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

o they lack ownership
~ they are short-lived
- they generally can do without an assignment operator

~ they generally appear only in function parameter lists

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Borrow types are essentially “borrowed” references to existing objects

o they lack ownership

~ they are short-lived

- they generally can do without an assignment operator
~ they generally appear only in function parameter lists

- they generally cannot be stored in data structures or
returned safely from functions (no ownership semantics)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :string_viewis a borrow type

string_view is assignable: svl = sv/

Assignment has shallow semantics (of course, the viewed strings are immutable)

Meanwhile, the comparison svl == sVv/ has deep semantics (lexicographic comp)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :string_view

Non-owning reference type

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited

std: :string_view

Non-owning reference type

When the underlying data is extant and constant

we can determine whether the rest of its usage still looks Regular

When used properly (eg. function parameter),

string_view works well...

as If it is a Reqgular type

2023 Victor Ciura | @ciura_victor - Regular, Revisited

€++20 sStd::span<Tl>

Think "array view" asin std::string_view,

but mutable on underlying data

https://en.cppreference.com/w/cpp/container/span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 38

https://en.cppreference.com/w/cpp/container/span

€++20 sStd::span<Tl>

A std: :span does not manage the storage that it refers to

Lifetime management is up to the user

https://en.cppreference.com/w/cpp/container/span

2023 Victor Ciura | @ciura_victor - Regular, Revisited 39

https://en.cppreference.com/w/cpp/container/span

Historical Background
std: :span

\\
Comes directly from the C++ Core Guidelines’ GSL and is intended to be a

replacement especially for unsafe C-style (pointer, length) parameter pairs.

We expect to be used pervasively as a vocabulary type for function parameters

in particular.

span: bounds-safe views for sequences of objects

2023 Victor Ciura | @ciura_victor - Regular, Revisited

2023 Victor Ciura | @ciura_victor - Regular, Revisited

WWSD

What Would Stepanov Do?

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Should Span be Regular?

wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

~ overloading operators can be dangerous when you change the common meaning of the operator

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

~ overloading operators can be dangerous when you change the common meaning of the operator

- the meaning of copy construction and copy assignment is to copy the value of the object

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

~ overloading operators can be dangerous when you change the common meaning of the operator
- the meaning of copy construction and copy assignment is to copy the value of the object

~ the meaning of == and < is to compare the value of the object

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

~ overloading operators can be dangerous when you change the common meaning of the operator
- the meaning of copy construction and copy assignment is to copy the value of the object
~ the meaning of == and < is to compare the value of the object

© copy, assignment, equality are expected to go together (act as built-in types -- intuitively)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

"Copy or copy not; there is no shallow" - Master Yoda

~ overloading operators can be dangerous when you change the common meaning of the operator
- the meaning of copy construction and copy assignment is to copy the value of the object
~ the meaning of == and < is to compare the value of the object

© copy, assignment, equality are expected to go together (act as built-in types -- intuitively)

-~ when designing a class type, where possible it should be a Regular type (see EoP)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)
~ we could make operator== deep (elements in the span are compared with std: :equal()),

just like std: :string_view

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)

~ we could make operator== deep (elements in the span are compared with std: :equal ()),
just like std: :string_view
~ however string_view can't modify the elements it points at (const)

=> the shallow copy of string_view is similar to a copy-on-write optimization

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)
~ we could make operator== deep (elements in the span are compared with std: :equal ()),
just like std: :string_view
~ however string_view can't modify the elements it points at (const)
=> the shallow copy of string_view is similar to a copy-on-write optimization

~ but is span a value ? do we need a deep compare ?

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)
- we could make operator== deep (elements in the span are compared with std: :equal ()),
just like std: :string_view
~ however string_view can't modify the elements it points at (const)
=> the shallow copy of string_view is similar to a copy-on-write optimization

~ but is span a value ? do we need a deep compare ?

© std: :spanis trying to act like a collection of the elements over which it spans

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)
- we could make operator== deep (elements in the span are compared with std: :equal ()),
just like std: :string_view
~ however string_view can't modify the elements it points at (const)
=> the shallow copy of string_view is similar to a copy-on-write optimization

~ but is span a value ? do we need a deep compare ?

© std: :spanis trying to act like a collection of the elements over which it spans

© butit's not Regular!

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

© operator= (copy) is shallow (just pointer and size are copied)
- we could make operator== deep (elements in the span are compared with std: :equal ()),
just like std: :string_view
~ however string_view can't modify the elements it points at (const)
=> the shallow copy of string_view is similar to a copy-on-write optimization

~ but is span a value ? do we need a deep compare ?

© std: :spanis trying to act like a collection of the elements over which it spans

© butit's not Regular!

© basically std: : span has reference semantics

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)

- all parts of the type that constitute its value (eg. participate in == and copy)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
< all parts of the type that constitute its value (eg. participate in == and copy)

© deep equality means the value of span are the elements it spans, not { ptr + size }

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
- all parts of the type that constitute its value (eg. participate in == and copy)

- deep equal ity means the value of span are the elements it spans, not { ptr + size }

- If we want span to act like a lightweight representation of the elements it references:

=> we need to have a shallow operator== (just like smart pointers)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
- all parts of the type that constitute its value (eg. participate in == and copy)

- deep equal ity means the value of span are the elements it spans, not { ptr + size }

- If we want span to act like a lightweight representation of the elements it references:

=> we need to have a shallow operator== (just like smart pointers)

- shallow const => shallow operator==

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
- all parts of the type that constitute its value (eg. participate in == and copy)

- deep equal ity means the value of span are the elements it spans, not { ptr + size }

~ If we want span to act like a lightweight representation of the elements it references:

=> we need to have a shallow operator== (just like smart pointers)

- shallow const => shallow operator==

~ but shallow operator== might be really confusing to users (especially because of string_view)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
- all parts of the type that constitute its value (eg. participate in == and copy)

~ deep equal 1ty means the value of span are the elements it spans, not { ptr + size }

~ If we want span to act like a lightweight representation of the elements it references:

=> we need to have a shallow operator== (just like smart pointers)
- shallow const => shallow operator==
~ but shallow operator== might be really confusing to users (especially because of string_view)

~ final decision was to REMOVE operator== completely

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

Should Span be Regular?

wg21.link/p1085

- deep operator== also implies deep const (logical const) - extend protection to all parts (EoP)
- all parts of the type that constitute its value (eg. participate in == and copy)

~ deep equal 1ty means the value of span are the elements it spans, not { ptr + size }

~ If we want span to act like a lightweight representation of the elements it references:

=> we need to have a shallow operator== (just like smart pointers)
- shallow const => shallow operator==

~ but shallow operator== might be really confusing to users (especially because of string_view)

- final decision was to REMOVE operator== completely @?E&Eg

g

2023 Victor Ciura | @ciura_victor - Regular, Revisited

http://wg21.link/p1085

A Strange Beast

std: :span - a case of unmet expectations...

~ Users of the STL can reasonably expect span to be a drop-in replacement for

std: :vector | std::array

-~ And that happens to be mostly the case...
< Until of course, you try to copy it or change its value,

then it stops acting like a container :(

2023 Victor Ciura | @ciura_victor - Regular, Revisited

A Strange Beast

std: :span - a case of unmet expectations...

~ Users of the STL can reasonably expect span to be a drop-in replacement for

std: :vector | std::array

-~ And that happens to be mostly the case...
< Until of course, you try to copy it or change its value,

then it stops acting like a container :(

std: :span is Regular SemiRegular

2023 Victor Ciura | @ciura_victor - Regular, Revisited

€++20 sStd::span<Tl>

Photo credit: Corentin Jabot cor3ntin.github.io/posts/span/

2023 Victor Ciura | @ciura_victor - Regular, Revisited 96

https://cor3ntin.github.io/posts/span/

Non-owning reference types
ike string_view or span

You need more contextual information when working
on an instance of this type

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Non-owning reference types
ike string_view or span

You need more contextual information when working
on an instance of this type

Things to consider;
o shallow copy ?
o shallow / deep compare ?

o const / mutability 7

o operator==

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Non-owning reference types
ike string_view or span

Have reference semantics,
but without the "magic” that can make references safer

(for example /ifetime extension)

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Lifetime

std::string Name() {
return std::string("some long runtime value string");

}

const string & str = Name();
std::print("{}", str);

string view sv = Name();
std::print("{}", sv);

~ const lvalue ref binds to rvalue and provides lifetime extension
o string_view doesn't extend the lifetime of the rvalue

- For short strings this issue might be hard to detect due to SSO.
Problem becomes obvious with longer dynamically allocated strings.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

2023 Victor Ciura | @ciura_victor - Regular, Revisited

7 call To Action

Make your value types Regular

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

Make your value types Regular

The best Reqgular types are those that model built-1ns
most closely and have no dependent preconditions.

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

\Vlake your value types Regular

The best Reqgular types are those that model built-1ns
most closely and have no dependent preconditions.

Think 1nt or std::string or std::vector

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

For non-owning reference types like string_view or span

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

2023 Victor Ciura | @ciura_victor - Regular, Revisited

<7 call To Action

For non-owning reference types like string_view or span

You need more contextual information when working
on an instance of this type

Try to restrict these types to SemiRegular
to avoid confusion for your users

2023 Victor Ciura | @ciura_victor - Regular, Revisited

Regular, Revisited

Meeting C++

November 2023

Victor Ciura
Y @ciura_victor Principal Engineer

% Q@ciura_victor@hachyderm.io Visual C++

https://twitter.com/ciura_victor

