
@ciura_victor
Victor Ciura 

Principal Engineer 
Visual C++ 🐘 @ciura_victor@hachyderm.io

Myths, Dogma and Practice
~2023();

https://twitter.com/ciura_victor


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 2

Q & A

Do ask questions as we go along


Comments are welcome, too🙋



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 3

Actually, ...

The C++ community is very large and quite vocal  

when it comes to controversial issues


🗣 🗣
Actually...



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 4

Your opinion...

Developers love to treat their opinions like facts: "This is the right way"


No, that's just another way, with a different set of pros and cons.

-- David Fowler



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 5

We're Different

We’re very fragmented on many topics


based on the breadth of the C++ ecosystem 


background/experience we each bring from our C++ niche




2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 6

We're Different

We’re very fragmented on many topics (Bjarne Stroustrup's 🐘 elephant metaphor)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 7

Sources

A lot of good information easily available:


CppCoreGuidelines


(opinionated) best practices


established idioms


books


conference presentations


StackOverflow



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 8

Myths

Mixed up with all of this, there are also plenty of myths

some myths stem from obsolete information 


some from bad teaching materials


old coding guidelines in some projects


onboarding C++ beginners on legacy C++ codebases (bad habits by example)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 9

Help 😸



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 10

Motivation

How it started...



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 11

Mythbusting with Jason - unscripted improv (Pandemic edition)
youtube.com/watch?v=Bu1AEze14Ns21k views

https://www.youtube.com/watch?v=Bu1AEze14Ns


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 12

C++ Mythbusters

youtube.com/watch?v=ZGgrUhVNsSI

https://www.youtube.com/watch?v=ZGgrUhVNsSI


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 13

Verdict

🙋



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 14

Verdict

A programmer's staple response: 


"It depends..." 🤓



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 15

Verdict

Let's test this...

🙋



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 16

Test Myth

iostreams are slow

Just kidding 😄


It's not a myth, we've known this for years.



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 17

Test Myth

It's 2023, we should be able to leverage the 

power of C++20 modules to (re)structure our 

codebase and improve build times.

⚙
Integrating C++ header units into Office using MSVC (Part 2). 

The path to a clean code structure and better build throughput.

devblogs.microsoft.com/cppblog/integrating-c-header-units-into-office-using-msvc-2-n/

Where are all the compilers?!

https://devblogs.microsoft.com/cppblog/integrating-c-header-units-into-office-using-msvc-2-n/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 18

Test Myth

coroutines shipped in C++20



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 19

CÖRUTIN



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 20

Test Myth

coroutines shipped in C++20

Kinda... 😔

We're going to get a generators library in C++23 (ranges library)

#include <generator>



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 21

C++ Myths

Let's dig in!

I think you got how it works



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 22

Tools 🪓

Humans Depend on Tools



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 23

Myth #14

C++ is not easily toolable 🛠



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 24

Tools 🧰

I'm a tool builder

Advanced Installer Clang Power Tools Visual C++

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 25

Programmers Depend on Tools

code editor/IDE recent compiler(s) 
[conformant/strict]

(visual) debugger

linter/formatter

test framework

perf profiler

CI/CD service

SCM client

package manager

static analyzer

dynamic analyzer 
(runtime)

(automated) refactoring tools

build system

+ fuzzing
code reviews platform

IntelliSense



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 26

Programmers Depend on Tools

youtube.com/watch?v=q7Gv4J3FyYE
C++ Weekly - The Right Way to Write C++ Code

github.com/lefticus/cpp_weekly/issues/175

https://www.youtube.com/watch?v=q7Gv4J3FyYE
https://github.com/lefticus/cpp_weekly/issues/175


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 27

Myth #14

C++ is not easily toolable 🛠

Get to know your tools well



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 28

Myth #11

printf/sprintf are very fast

sprintf uses the global locale


=> mutex lock ☹

On macOS, sprintf - that is in system libraries  
ends up spending almost all the time inside a locale-related mutex lock 🔥



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 29

Myth #11

printf/sprintf are very fast

developer.blender.org/D13998

Blender case study: sprintf => {fmt} 


on macOS: 3-4x speedup 


on Windows: 20% speedup (due to a faster float/int formatter)

https://developer.blender.org/D13998


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 30

Myth #11

printf/sprintf are very fast

 Use C++20 std::format or {fmt} library - fmt::format()

⚠ Beware of standard functions that use locale

 Use C++23 std::print   or {fmt} library - fmt::print()



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 31

Locale 🔒

twitter.com/dotstdy/status/1585530722751811584

⚠ Beware of locale

https://twitter.com/dotstdy/status/1585530722751811584?s=46&t=xHdw-bh9nYGiVB7haQ2HMQ


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 32

Locale 🔒

⚠ Beware of locale 🔒

github.com/microsoft/STL/issues/3030

https://github.com/microsoft/STL/issues/3030


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 33

Myth #19

std::regex is too slow for 
production use

const auto r = std::regex(R"((\S+)\s*=\s*(\S+))"); 

std::cmatch results; 
const auto success = std::regex_match("x = 5", results, r); 

fmt::print("Matched: {} '{}'='{}'", success, 
           string(results[0].first, results[0].second), 
           string(results[1].first, results[1].second));

This short snippet is so slow to 
compile, it will actually timeout in 
CompilerExplorer 😄



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 34

Myth #19

difficult to use API


very slow to compile


very slow at runtime


perf gotchas: regex c-tor, cmatch expensive

std::regex is too slow for 
production use



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 35

Myth #19

Use CTRE library instead:


very fast to compile


much cleaner API


supports string_view


builds regular expressions automata at compile time


github.com/hanickadot/compile-time-regular-expressions

std::regex is too slow for 
production use

https://github.com/hanickadot/compile-time-regular-expressions


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 36

Myth #24

Let's see...

std::optional inhibits optimizations



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 37

Myth #24

48 65 6c 6c  
"Hell"

0x6F = 'o'



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 38

Myth #24

compiler still sees 
through it and inlines it

no more SSO



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 39

Myth #24

std::optional inhibits optimizations

However...



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 40

Myth

~40% more instructions

copy constructing 
a string



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 41

Myth #24

template <class U = T> 
constexpr optional(U && value);

Constructs an optional object that contains a value, initialized as if direct-initializing  
(but not direct-list-initializing) an object of type T with std::forward<U>(value) 

this constructor does not participate in overload resolution 
unless std::is_constructible_v<T, U&&> is true and std::remove_cvref_t<U>  
is neither std::in_place_t nor std::optional<T>


this constructor is explicit iff std::is_convertible_v<U&&, T> is false



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 42

Good names

std::move doesn't move


std::forward doesn't forward


std::remove doesn't remove


std::function is not a function


...



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 43

Myth #31

std::move() moves ?

void echo(const std::string & first, const std::string & second) 
{ 
  fmt::print("'{}','{}'", first, second); 
} 

int main() 
{ 
  std::string greeting{"Hello from a long string"}; 
  echo(greeting, greeting); 
} 

'Hello from a long string','Hello from a long string'



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 44

Myth #31

std::move() moves ?

void echo(const std::string & first, const std::string & second) 
{ 
  fmt::print("'{}','{}'", first, second); 
} 

int main() 
{ 
  std::string greeting{"Hello from a long string"}; 
  echo(std::move(greeting), greeting); 
} 

'Hello from a long string','Hello from a long string'



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 45

Myth #31

std::move() moves ?

void echo(const std::string & first, const std::string & second) 
{ 
  fmt::print("'{}','{}'", first, second); 
} 

int main() 
{ 
  std::string greeting{"Hello from a long string"}; 
  echo(std::move(greeting), std::move(greeting)); 
} 

'Hello from a long string','Hello from a long string'

string && => const string &

😱



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 46

Myth #31

std::move() moves ?

void echo(const std::string first, const std::string second) 
{ 
  fmt::print("'{}','{}'", first, second); 
} 

int main() 
{ 
  std::string greeting{"Hello from a long string"}; 
  echo(std::move(greeting), std::move(greeting)); 
} 

'Hello from a long string',''

string(std::move(greeting))

clang



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 47

Myth #31

std::move() moves ?

void echo(const std::string first, const std::string second) 
{ 
  fmt::print("'{}','{}'", first, second); 
} 

int main() 
{ 
  std::string greeting{"Hello from a long string"}; 
  echo(std::move(greeting), std::move(greeting)); 
} 

'','Hello from a long string'

string(std::move(greeting))

gcc



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 48

Myth #31

std::move() moves ?



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 49

Myth #36

Always pass input arguments 

by const reference

void echo(const std::string & first, const std::string & second);



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 50

Myth #36

class Widget 
{ 
  std::string id; 
   
public: 

  Widget(const std::string & new_id)  
  : id(new_id) {} 

  Widget(std::string && new_id)  
  : id(std::move(new_id)) {} 

};



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 51

Myth #36
class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  Widget(const std::string & new_id, const std::string & new_name)  
  : id(new_id), name(new_name) {} 

  Widget(std::string && new_id, std::string && new_name)  
  : id(std::move(new_id)), name(std::move(new_name)) {} 

  Widget(const std::string & new_id, std::string && new_name)  
  : id(new_id), name(std::move(new_name)) {} 

  Widget(std::string && new_id, const std::string & new_name)  
  : id(std::move(new_id)), name(new_name) {} 

};
😅



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 52

Myth #36

class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  Widget(std::string new_id, std::string new_name)  
  : id(std::move(new_id)), name(std::move(new_name)) {} 

};

by value

when we take ownership (sink)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 53

Myth #36

class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  void set_name(std::string new_name)  
  { 
    name = std::move(new_name);  
  } 

};

by value

when we take ownership (sink)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 54

Myth #36

class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  void set_name(std::string new_name)  
  { 
    name = std::move(new_name);  
  } 
}; 

Widget w; 
w.set_name("Hello from a long string");

create the string with the literal value 
move assignment into data member



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 55

Myth #36

class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  void set_name(std::string new_name)  
  { 
    name = std::move(new_name);  
  } 
}; 

Widget w; 
std::string name{"Hello from a long string"}; 
w.set_name(name);

create the string with the literal value 
make a copy of the string 
move assignment into data member



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 56

Myth #36

class Widget 
{ 
  std::string id; 
  std::string name; 

public: 

  void set_name(std::string new_name)  
  { 
    name = std::move(new_name);  
  } 
}; 

Widget w; 
std::string name{"Hello from a long string"}; 
w.set_name(std::move(name));

create the string with the literal value 
move construct the string 
move assignment into data member



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 57

Myth #36
class Widget 
{ 
  std::string name; 

public: 

  void set_name(const std::string & new_name)  
  { 
    name = new_name;  
  } 
  void set_name(std::string && new_name)  
  { 
    name = std::move(new_name);  
  } 
}; 

Widget w; 
std::string name{"Hello from a long string"}; 
w.set_name(name);

create the string with the literal value 
make a copy of the string

Technically, more efficient  
(one less move operation)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 58

Myth #36

Always pass input arguments 

by const reference

There's even a clang-tidy modernizer check to perform 
this transformation automatically, at scale


clang.llvm.org/extra/clang-tidy/checks/modernize-pass-by-value

https://clang.llvm.org/extra/clang-tidy/checks/modernize-pass-by-value.html


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 59

Myth #5

Adding const always helps

const all the things!



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 60

Myth #5

Adding const always helps

https://www.youtube.com/watch?v=dGCxMmGvocE

wait...

https://www.youtube.com/watch?v=dGCxMmGvocE


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 61

Myth #5
Top 4 places to never use const:


don't const non-reference return types


don't const local values that need to take advantage of implicit move-on-return 

operations (even if you have multiple different objects that might be returned)


don't const non-trivial value parameters that you might need to return directly from the 

function


don't const any member data  

- it breaks implicit and explicit moves  

- it breaks common use cases of assignment
compiler-explorer.com/z/9Wcc54r9x

https://compiler-explorer.com/z/9Wcc54r9x


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 62

Myth #5

Adding const always helps



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 63

Myth #37

Make All Data Members Private ?

typically seen as good practice 


enforces encapsulation: the object is in control of its internal states 


not all types have invariants to enforce (document invariants)


narrow/wide contracts


added complexity (YAGNI - "You aren't gonna need it")


write simpler classes


maybe you don't need constructors either { }


refactoring concerns



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 64

Myth #37

Make All Data Members Private ?

Sometimes structs just wanna be structs 😄



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 65

Myth #37

youtube.com/watch?v=Y3wxJD3BpqI

https://www.youtube.com/watch?v=Y3wxJD3BpqI


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 66

Myth #37

Make All Data Members Private ?

Sometimes structs just wanna be structs 😄



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 67

Myth #39

std::ranges are safer than iterators

All our experience with iterators since the 90s, tells us they should be 🙂



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 68

Myth #39

C++20 ranges library is fantastic tool, but watch out for gotchas ⚠

views have reference semantics => all the reference gotchas apply


as always with C++, const is shallow and doesn't propagate (as you might expect)


some functions do caching, eg. begin(), empty(), | filter | drop


don't hold on to views or try to reuse them 


safest to use them ad-hoc, as temporaries


if needed, better "copy" them (cheap) for reuse

* the Nico slide :)



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 69

Myth #39

youtube.com/watch?v=qv29fo9sUjY

https://www.youtube.com/watch?v=qv29fo9sUjY


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 70

Myth #39

youtube.com/watch?v=qv29fo9sUjY

Ranges & filter predicate invariant

https://www.youtube.com/watch?v=qv29fo9sUjY


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 71

Myth #39

std::ranges are safer than iterators



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 72

Myth #7

CMake is the gold standard of C++ project systems



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 73

Myth #7

CMake: 


When it works, it's great; 


when it doesn't, you're regretting your life decisions 🙂

twitter.com/pati_gallardo/status/1672137915

“

https://twitter.com/pati_gallardo/status/1672137915575545856?s=46&t=dcjdCXT0jeVLLjXhQ3J85A


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 74

Myth #7

youtube.com/watch?v=1eVJBEV9NTk

CMake Debugger

in Visual Studio and VSCode

https://www.youtube.com/watch?v=1eVJBEV9NTk


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 75

Myth #7

devblogs.microsoft.com/cppblog/introducing-cmake-debugger-in-vs-code

https://devblogs.microsoft.com/cppblog/introducing-cmake-debugger-in-vs-code-debug-your-cmake-scripts-using-open-source-cmake-debugger/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 76

Myth #7

The CMake debugger has now been implemented in VS & VSCode 


and merged upstream to Kitware.


CMake Debugger: VS + VSCode + Rider + CLion 




2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 77

Myth #7

CMake is the gold standard of C++ project systems



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 78

Myth #10

C++ is slow to compile

It's all about the structure & build configuration you have.


So, you think you know why your builds take so long... you'd be surprised.⚙



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 79

Myth #10

Multiple ways to improve (or screw up) your build:


build configuration


project dependencies (graph)


header usage (compilation firewalls)


unity builds


PCH


C++ modules/header units


build caches


build accelerators


vfs


... use ranges 



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 80

Myth #10

Tooling can help: ClangBuildAnalyzer -ftime-trace🧰



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 81

Myth #10

Tooling can help: vcperf + WPA🧰

• vcperf /start MySession 
• build your C++ project
• vcperf /stop MySession outputFile.etl

devblogs.microsoft.com/cppblog/introducing-c-build-insights/

https://devblogs.microsoft.com/cppblog/introducing-c-build-insights/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 82

Myth #10

Tooling can help: Build Insights in Visual Studio🧰

devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

https://devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 83

Myth #10

Tooling can help: Build Insights in Visual Studio🧰

devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/

https://devblogs.microsoft.com/cppblog/build-insights-now-available-in-visual-studio-2022/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 84

Myth #10

Tooling can help: Build Insights in Visual Studio🧰

[Functions View] - how long a function takes during compilation, as well as the number of forceinline



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 85

Myth #10

#include cleanup🧰

devblogs.microsoft.com/cppblog/include-cleanup-in-visual-studio/

https://devblogs.microsoft.com/cppblog/include-cleanup-in-visual-studio/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 86

Myth #10

youtube.com/watch?v=PfHD3BsVsAM

https://www.youtube.com/watch?v=PfHD3BsVsAM


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 87

Myth #10

C++ is slow to compile

It can be, but if you work on it (+good tooling) you can drastically improve it.



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 88

Myth #12

The sad state of Debug performance in C++

“zero cost abstraction” is a kind of a lie - for sure on Debug builds (no optimizations)


eg.

int i = 0; 
std::move(i); 
std::forward<int&>(i); 

➡ static_cast<int&&>(i);

vittorioromeo.info/index/blog/debug_performance_cpp.html

https://vittorioromeo.info/index/blog/debug_performance_cpp.html


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 89

Myth #12

godbolt.org/z/Pj6xahP9j

https://gcc.godbolt.org/z/Pj6xahP9j


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 90

Myth #12

godbolt.org/z/5vEhrnPbK

☹

https://gcc.godbolt.org/z/5vEhrnPbK


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 91

Myth #12

devblogs.microsoft.com/cppblog/improving-the-state-of-debug-performance-in-c/

Compilers can implement some mechanism to acknowledge meta functions like 
std::move and std::forward as compiler intrinsics - in the compiler front-end


MSVC took an alternative approach and implemented this new inlining ability using a 
C++ attribute: [[msvc::intrinsic]]


The new attribute will semantically replace a function call with a cast to that function’s 
return type if the function definition is decorated with[[msvc::intrinsic]]


=> extensible to your own such utility functions
youtu.be/idwVQUG6Jqc

https://devblogs.microsoft.com/cppblog/improving-the-state-of-debug-performance-in-c/
https://youtu.be/idwVQUG6Jqc


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 92

Myth #12

The sad state of Debug performance in C++



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 93

Myth #23

C++ will never be a safe language

type safety

bounds safety

lifetime safety

initialization safety

object access safety

thread safety

arithmetic safety



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 94

Myth #23
C++ is under attack... and the community is responding 🤷

defense.gov/2022/Nov/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 95

Myth #23

Tradeoffs need to be made...


"To UB, or not to UB" 
-- Prince Hamlet

We have not addressed C++ safety until we have eliminated all UB.


We can't completely eliminate UB from C++ (for good reasons*).

C++ will never be a safe language➡



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 96

Myth #23



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 97

Myth #23

An excellent essay on the subject of safety: "If we must, let's talk about safety"

-- Corentin Jabotcor3ntin.github.io/posts/safety/

A cakewalk and eating it too


Borrowing the borrow checker


But we care about safety, right?


Dogma


Down with Safety!


UB


Correct by confusion


++(C++) / Rust

https://cor3ntin.github.io/posts/safety/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 98

Myth #23

Guarantee lifetime safety: 

garbage collector 😱

dynamic memory analysis (ASan)

statically enforce rules on references: multiple immutable refs || unique mutable ref


by compiler/language: 

• borrow checker (Rust)

• mutable value semantics (Val Hylo)

• no direct mutation (Haskell & other pure functional languages)

by tooling (static lifetime analysis): 

• clang-tidy

• MSVC

• other commercial analyzers (plenty of them)




2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 99

Myth #23

AAA (almost always auto)


AAA (almost always analyze)

The new C++ "AAA"



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 100

Myth #23

youtube.com/watch?v=i8_RfDAEjMs

https://www.youtube.com/watch?v=i8_RfDAEjMs


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 101

Myth #23

ASan FTW !!!

-fsanitizer=address 

{ Clang, gcc, MSVC } youtube.com/watch?v=yJLyANPHNaA

https://www.youtube.com/watch?v=yJLyANPHNaA


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 102

Myth #23

ASan continue_on_error


NEW: (Visual Studio 2022 v17.6)

Address Sanitizer runtime which provides a new “checked build”. 

This new runtime mode diagnoses and reports hidden memory safety errors,  
with zero false positives, as your app runs. youtube.com/watch?v=i8_RfDAEjMs

devblogs.microsoft.com/cppblog/addresssanitizer-continue_on_error/

https://www.youtube.com/watch?v=i8_RfDAEjMs
https://devblogs.microsoft.com/cppblog/addresssanitizer-continue_on_error/


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 103

Myth #23

Static Analysis lifetime annotations for C++


NEW: 

[[clang::lifetimebound]]  and  [[msvc::lifetimebound]]

youtube.com/watch?v=fe6yu9AQIE4
discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377

https://www.youtube.com/watch?v=fe6yu9AQIE4
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377


2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 104

Myth #23

C++ will never be a safe language*

* but it can be much safe(r) with some effort and good tooling 🧰 



2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 105

Myth #0

"Before we had [feature], we were nonetheless able to program in C++" 


- Pablo Halpern, ACCU Conf 2022 (via Kate Gregory)


New (C++) is the enemy of the old




2023  Victor Ciura  |  @ciura_victor  - Myths, Dogma and Practice 106

New (C++) is the enemy of the old

twitter.com/tvaneerd/status/1387

https://twitter.com/tvaneerd/status/1387631977373765632?s=20&t=PPc9s1KKudr36Os1MIR9nw


@ciura_victor
Victor Ciura 

Principal Engineer 
Visual C++ 🐘 @ciura_victor@hachyderm.io

Myths, Dogma and Practice
~2023();

https://twitter.com/ciura_victor

