
@ciura_victor Victor Ciura
Principal Engineer

M365 Substrate
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Shared-nothing
Architecture

Rust Prague Meetup
March 2024

https://twitter.com/ciura_victor

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 2

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.socialM365 Substrate

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 3

Context

Servers have 100+ cores now, 
with several NUMA regions

We want to minimize latency & total cores used

Typical services are I/O-bound

. . .

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 4

Execution Model

Goals:

Define how application code runs in a Rust process

High performance

Simple to understand

Correct by construction

Easy to compose (ergonomic)

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 5

Execution Model

Model:

Cooperative multitasking

One OS thread pinned to each core

No preemptive context switching (no locks!)

Async operations produce tasks which are

added to a per-thread queue

Time

Per-Thread
Task Queue

Time

Per-Thread
Task Queue

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 6

Execution Model

🙂 Benefits:

Faster serial performance

Near-linear scaling

Reduced tail latency for I/O-heavy

operations

😕 Problems:

Compute-intensive tasks delay

processing of queued tasks

Can leave some cores idle while

other cores are overcommitted

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 7

Compute-heavy workloads

Time

For compute-heavy workloads, a single task takes a long sustained batch of compute

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 7

Compute-heavy workloads

Time

For compute-heavy workloads, a single task takes a long sustained batch of compute

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 8

Compute-heavy workloads

Time

+ extra CPUs, you can cut that task length dramatically by splitting it across CPUs

(but you get some synchronization overhead)

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 8

Compute-heavy workloads

Time

+ extra CPUs, you can cut that task length dramatically by splitting it across CPUs

(but you get some synchronization overhead)

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 9

I/O-heavy workloads

Time

with IO-heavy tasks, we instead have lots of little bits of work to do per task

we fill in the gaps with other tasks

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 9

I/O-heavy workloads

Time

with IO-heavy tasks, we instead have lots of little bits of work to do per task

we fill in the gaps with other tasks

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 10

I/O-heavy workloads

Time

the overhead now is a higher fraction of our total work

both throughput is lower *and* tail latencies (especially) are higher

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 10

I/O-heavy workloads

Time

the overhead now is a higher fraction of our total work

both throughput is lower *and* tail latencies (especially) are higher

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 11

“Shared nothing” ideal

Time

we want to separate these CPUs as much as possible

give them each an independent set of tasks to accomplish

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 12

Shared nothing

"Shared nothing" is well supported in Rust:

stack allocations

move by default, rather than aliasing

deep immutability

whole-part semantics for structs

explicit references

explicit copy/clone

deterministic destruction

Sometimes you need to share, though...

this needs to be deliberate, rather than accidental

explicit language constructs

specialized data structures/policies

We want to support sharing between cores with as low overhead as possible,

requires exploring how memory is structured on these big NUMA machines

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 13

Uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 13

Uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 13

Uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 14

Non-uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 14

Non-uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 14

Non-uniform memory access

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 15

NUMA Memory Model

Modern hardware has NUMA effects

Optimize for NUMA:

Per-core mutable state

Per-node immutable state

Dedicated NUMA-aware sharing abstractions

Isolation helps even without NUMA by reducing

cache trashing and memory diffusion

Reduce memory distance

NUMA node #0

NUMA node #1

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 16

NUMA Effects

pub fn do_work(data: Vec<LargeData>) {
 // ...
}

We have some function running on a thread which takes a bunch of large data to operate on

If this data lives on a different NUMA node, and we access it repeatedly, this can be slower

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 17

NUMA Effects

pub fn do_work(data: Vec<LargeData>) {
 let data = make_closer(data);
 // ...
 work(data);
}

pub fn make_closer<T: Clone>(t: T) -> T {
 << redacted magic 🪄 >>
 t.clone()
}

do_work()

data

data

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 18

Ongoing work

How do we expose this
to service code?

What diagnostics/tools
do we need?

What prior art we can build on?

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 18

Ongoing work

How do we expose this
to service code?

!Send types

Core pinning

“Pack up” API

What diagnostics/tools
do we need?

What prior art we can build on?

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 18

Ongoing work

How do we expose this
to service code?

!Send types

Core pinning

“Pack up” API

What diagnostics/tools
do we need?

Type errors

Linters

Runtime detection

What prior art we can build on?

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 18

Ongoing work

How do we expose this
to service code?

!Send types

Core pinning

“Pack up” API

What diagnostics/tools
do we need?

Type errors

Linters

Runtime detection

What prior art we can build on?

NUMA-aware allocators

NUMA metadata crates

NUMA-aware data structures

2024 Victor Ciura | @ciura_victor - Shared-nothing Architecture 19

Open Questions

<slide intentionally left blank>

🗣

@ciura_victor Victor Ciura
Principal Engineer

M365 Substrate
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Shared-nothing
Architecture

Rust Prague Meetup
March 2024

https://twitter.com/ciura_victor

