

@ciura_victor Victor Ciura
Principal Engineer

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

So You Think You Can Hash

CppCon
September 2024

https://twitter.com/ciura_victor

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash X

Abstract

 Hashing is crucial for efficient data retrieval and storage. This presentation delves into computing
hashes for aggregated user-defined types and experimenting with various hash algorithms. We will
explore the essentials of hash functions and their properties, techniques for hashing complex user-
defined types, and customizing std::hash for specialized needs.

 Additionally, we (re)introduce a framework for experimenting with and benchmarking different
hash algorithms. This will allow easy switching of hashing algorithms used by complex data
structures, enabling easy comparisons.

 Hash algorithm designers can concentrate on designing better hash algorithms, with little worry
about how these new algorithms can be incorporated into existing code. Type designers can create
their hash support just once, without worrying about what hashing algorithm should be used.

 You will gain practical insights and tools to implement, customize, and evaluate hash functions in
C++, enhancing software performance and reliability.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 3

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling

🦀

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 4

Motivation

Hashing is crucial for efficient data retrieval and storage.

This exploration delves into computing hashes for aggregated user-defined types
and experimenting with various hash algorithms.

We will explore the essentials of hash functions and their properties,

techniques for hashing complex user-defined types, and customizing std hash for
specialized needs.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 5

Motivation

A hashing "framework" for:

easy experimenting and benchmarking with different hash algorithms

easy swapping of hashing algorithms (later on)

hashing complex aggregated user-defined types

enabling easy comparisons of hashing techniques

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 6

Goals

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 6

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 6

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

Type designers (developers) can create their hash support just once,
without worrying about what hashing algorithm should be used.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 6

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

Type designers (developers) can create their hash support just once,
without worrying about what hashing algorithm should be used.

We'll try to gain practical insights and mechanisms to implement, customize,
and evaluate hash functions, enhancing software performance and reliability.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 7

Slide Title

Primer

Most programming languages offer some kind of associative containers.

They may be called differently: maps, dictionaries, hash-maps, unordered-maps,
hash-tables, etc.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 8

Hash Functions & Hash Tables

A hash function is any function that can be used to map
data of arbitrary size to data of fixed size (hash code).

Hash functions are used in hash tables, to quickly locate
a data record given its search key.

The hash function is used to map the search key to an
index; the index gives the place in the hash table where
the corresponding record should be stored/found.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 9

Domain

The domain of a hash function (the set of possible keys) is larger than its range
(the number of different table indices), and so it will map several different keys
to the same index.

Each slot (bucket) of a hash table is associated with a set of records, rather
than a single record.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 10

Properties

Determinism

A hash procedure must be deterministic — meaning that for a given input value
it must always generate the same hash value.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 11

Properties

Uniformity

A good hash function should map the expected inputs as evenly as possible
over its output range.

That is, every hash value in the output range should be generated with roughly
the same probability.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 12

Properties

Defined Range

It is often desirable that the output of a hash function have fixed size.

If, for example, the output is constrained to 32-bit integer values, the hash
values can be used to index into an array (eg. hash tables).

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 13

Properties

Non-invertible

In cryptographic applications, hash functions are typically expected to be
practically non-invertible, meaning that it is not realistic to reconstruct the input
datum from its hash value alone, without spending great amounts of computing
time.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 14

Questions

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 14

Questions

How should one combine hash codes from your data members to create a “good”

hash function?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 14

Questions

How should one combine hash codes from your data members to create a “good”

hash function?

How does one know if you have a good hash function?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 14

Questions

How should one combine hash codes from your data members to create a “good”

hash function?

How does one know if you have a good hash function?

If somehow you knew you had a bad hash aggregate function, how would you

change it for a type built out of several data members (that are not primitive types)?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 14

Questions

How should one combine hash codes from your data members to create a “good”

hash function?

How does one know if you have a good hash function?

If somehow you knew you had a bad hash aggregate function, how would you

change it for a type built out of several data members (that are not primitive types)?

How to separate concerns: hash algorithms from the aggregation of the digest

(combine) and from the collection type itself (HashMap, BTreeMap, etc)?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 15

Hashing Composite Types

Let’s assume we want to store some custom struct into a hash map, but we can’t
use any unique/identifier field as key into the container (no UUID, no unique string).

So, we need a means of inserting such structure as key:

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
};

std::unordered_map<Customer, Records> customer_records;

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 15

Hashing Composite Types

Let’s assume we want to store some custom struct into a hash map, but we can’t
use any unique/identifier field as key into the container (no UUID, no unique string).

So, we need a means of inserting such structure as key:

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
};

std::unordered_map<Customer, Records> customer_records;

Instead of the plain:

std::unordered_map<String, CustomerRecords> customer_records;
std::unordered_map<Uuid, CustomerRecords> customer_records;

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 16

Hashing Composite Types

How does one hash this type?

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
 //...
};

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 17

std::hash

std::hash<Key>

Accepts a single parameter of type Key

Returns a value of type size_t that represents the hash value of the parameter

Does not throw exceptions when called

If k1 == k2 ➡ hash<Key>()(k1) == hash<Key>()(k2)

If k1 != k2 ➡ the probability that hash<Key>()(k1) == hash<Key>()(k2)  

should be very small, approaching 1.0/numeric_limits<size_t>::max()

std::size_t h1 = std::hash<std::string>{}(firstName);

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 18

std::hash

template< class T > struct hash<T*>;

template<> struct hash<bool>;
template<> struct hash<char>;
template<> struct hash<signed char>;
template<> struct hash<unsigned char>;
template<> struct hash<char16_t>;
template<> struct hash<char32_t>;
template<> struct hash<wchar_t>;
template<> struct hash<short>;
template<> struct hash<unsigned short>;
template<> struct hash<int>;
template<> struct hash<unsigned int>;
template<> struct hash<long>;
template<> struct hash<long long>;
template<> struct hash<unsigned long>;
template<> struct hash<unsigned long long>;
template<> struct hash<float>;
template<> struct hash<double>;
template<> struct hash<long double>;

Specializations for basic types:
std::hash<std::string>
std::hash<std::wstring>
std::hash<std::unique_ptr>
std::hash<std::shared_ptr>
std::hash<std::bitset>
//...

Specializations for library types:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 19

Hashing Composite Types

Is this a good hash strategy?

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = std::hash<std::string>{}(firstName);
 std::size_t k2 = std::hash<std::string>{}(lastName);
 std::size_t k3 = std::hash<int>{}(age);

 }
};

🤔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 19

Hashing Composite Types

Is this a good hash strategy?

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = std::hash<std::string>{}(firstName);
 std::size_t k2 = std::hash<std::string>{}(lastName);
 std::size_t k3 = std::hash<int>{}(age);

 }
};

🤔

return hash_combine(k1, k2, k3); // what algorithm is this?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 19

Hashing Composite Types

Is this a good hash strategy?

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = std::hash<std::string>{}(firstName);
 std::size_t k2 = std::hash<std::string>{}(lastName);
 std::size_t k3 = std::hash<int>{}(age);

 }
};

What if we wanted to use another hash algorithm?🤔

return hash_combine(k1, k2, k3); // what algorithm is this?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

But what to do with these hash codes now?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

But what to do with these hash codes now?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

But what to do with these hash codes now?

How should we combine them to obtain a unified hash representing our whole structure?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

But what to do with these hash codes now?

How should we combine them to obtain a unified hash representing our whole structure?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

But what to do with these hash codes now?

How should we combine them to obtain a unified hash representing our whole structure?

Believe it or not, there are such numerical algorithms for combining hash codes and
retaining the desirable properties of a good hasher.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 20

hash_combine()

template <class T>
inline void hash_combine(std::size_t & seed, const T & v)
{
 std::hash<T> hasher;
 seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

But what to do with these hash codes now?

How should we combine them to obtain a unified hash representing our whole structure?

Believe it or not, there are such numerical algorithms for combining hash codes and
retaining the desirable properties of a good hasher.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 21

hash_combine()

template <class T>
inline void hash_combine(std::size_t & seed, const T & v)
{
 std::hash<T> hasher;
 seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 21

hash_combine()

The magic number is supposed to be 32 “random” bits:

each is equally likely to be 0 or 1

with no simple correlation between the bits

A common way to find a pattern of such bits is to use the binary expansion of an irrational number.

In this case, that number is the reciprocal of the golden ratio:

φ = (1 + sqrt(5)) / 2
2^32 / φ = 0x9e3779b9

template <class T>
inline void hash_combine(std::size_t & seed, const T & v)
{
 std::hash<T> hasher;
 seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 22

hash_combine()

Such solutions while working in most cases, are not without problems, both in
terms of numerical/mathematical soundness (? any hash algorithm),

but also in terms of flexibility/composition of the code using them.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 22

hash_combine()

Such solutions while working in most cases, are not without problems, both in
terms of numerical/mathematical soundness (? any hash algorithm),

but also in terms of flexibility/composition of the code using them.

std::size_t hash_code() const
{
 std::size_t customer_hash = 0; // is this a good seed?

 hash_combine(customer_hash, firstName);
 hash_combine(customer_hash, lastName);
 hash_combine(customer_hash, age);
 //...

 return customer_hash;
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 22

hash_combine()

Such solutions while working in most cases, are not without problems, both in
terms of numerical/mathematical soundness (? any hash algorithm),

but also in terms of flexibility/composition of the code using them.

std::size_t hash_code() const
{
 std::size_t customer_hash = 0; // is this a good seed?

 hash_combine(customer_hash, firstName);
 hash_combine(customer_hash, lastName);
 hash_combine(customer_hash, age);
 //...

 return customer_hash;
}

hash algorithm hidden inside

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 23

hash_combine()

std::size_t customer_hash = 0; // is this a good seed?

hash_combine(customer_hash, firstName);
hash_combine(customer_hash, lastName);
hash_combine(customer_hash, age);
//...

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 23

hash_combine()

std::size_t customer_hash = 0; // is this a good seed?

hash_combine(customer_hash, firstName);
hash_combine(customer_hash, lastName);
hash_combine(customer_hash, age);
//...

The end result is that the algorithm is polluted by the combine step.

Is this a good hash strategy? Probably not.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 23

hash_combine()

std::size_t customer_hash = 0; // is this a good seed?

hash_combine(customer_hash, firstName);
hash_combine(customer_hash, lastName);
hash_combine(customer_hash, age);
//...

The end result is that the algorithm is polluted by the combine step.

Is this a good hash strategy? Probably not.

What if we wanted to use another hash algorithm?

The numerical solution (0x9e3779b9) for combining hash codes from std::hash
might not be sound for other hash algorithms. 🤔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 24

Unpack std::hash

But what's inside std::hash?

What's the algorithm used? 🙋

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 24

Unpack std::hash

But what's inside std::hash?

What's the algorithm used? 🙋
FNV-1A

Fowler-Noll-Vo hash was designed for fast hash-table and checksum use (not crypto).

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 24

Unpack std::hash

But what's inside std::hash?

What's the algorithm used? 🙋
FNV-1A

Fowler-Noll-Vo hash was designed for fast hash-table and checksum use (not crypto).

std::size_t fnv1a(void const * key, std::size_t len)
{
 std::size_t h = 14695981039346656037u;

 unsigned char const * p = static_cast<unsigned char const*>(key);
 unsigned char const * const e = p + len;
 for (; p < e; ++p)
 h = (h ^ *p) * 1099511628211u;

 return h;
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 24

Unpack std::hash

But what's inside std::hash?

What's the algorithm used? 🙋
FNV-1A

Fowler-Noll-Vo hash was designed for fast hash-table and checksum use (not crypto).

std::size_t fnv1a(void const * key, std::size_t len)
{
 std::size_t h = 14695981039346656037u;

 unsigned char const * p = static_cast<unsigned char const*>(key);
 unsigned char const * const e = p + len;
 for (; p < e; ++p)
 h = (h ^ *p) * 1099511628211u;

 return h;
} wikipedia.org/wiki/Fowler–Noll–Vo_hash_function

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 25

FNV-1A

We can easily apply such a hash function to obtain hash codes for all common types
(primitive or std) we might have in our class and even do that recursively, if we have
multiple-level aggregation.

std::size_t fnv1a(void const * key, std::size_t len)
{
 std::size_t h = 14695981039346656037u;

 unsigned char const * p = static_cast<unsigned char const*>(key);
 unsigned char const * const e = p + len;
 for (; p < e; ++p)
 h = (h ^ *p) * 1099511628211u;

 return h;
}

FNV_offset_basis

FNV_prime

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 26

FNV-1A
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = fnv1a(firstName.data(), firstName.size());
 std::size_t k2 = fnv1a(lastName.data(), lastName.size());
 std::size_t k3 = fnv1a(&age, sizeof(age));

 }
};

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 26

FNV-1A
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = fnv1a(firstName.data(), firstName.size());
 std::size_t k2 = fnv1a(lastName.data(), lastName.size());
 std::size_t k3 = fnv1a(&age, sizeof(age));

 }
};

return hash_combine(k1, k2, k3); // FNV1-A combine? Can we reuse this?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 26

FNV-1A

That didn't get us far... 🤷

Our algorithm is still “polluted” by the combine step...

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
// ...
 std::size_t hash_code() const
 {
 std::size_t k1 = fnv1a(firstName.data(), firstName.size());
 std::size_t k2 = fnv1a(lastName.data(), lastName.size());
 std::size_t k3 = fnv1a(&age, sizeof(age));

 }
};

return hash_combine(k1, k2, k3); // FNV1-A combine? Can we reuse this?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 27

Insights

If we analyze most hashing algorithms in common use:

FNV1a
SipHash
Spooky
Murmur
CityHash
etc.

we notice that they all share some common anatomy in their implementation.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 28

Insights

Anatomy of a Hash Function

1. Initialize internal state

2. Consume bytes into internal state

3. Finalize internal state to result type (usually size_t)

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 29

Anatomy of a Hash Function

std::size_t fnv1a(void const * key, std::size_t len)
{
 std::size_t h = 14695981039346656037u; ⇐ initialize internal state

 // consume bytes into internal state:
 unsigned char const * p = static_cast<unsigned char const*>(key);
 unsigned char const * const e = p + len;
 for (; p < e; ++p)
 h = (h ^ *p) * 1099511628211u;

 return h; ⇐ finalize internal state to size_t
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 30

Anatomy of a Hash Function

In this particular case (FNV1a), the Initialize and Finalize steps are trivial,
but for other hashing algorithms, these might be much more involved and
very costly (runtime).

So, we want to make sure that even if idempotent with regards to the end hash code,
we don’t execute the initialization and finalize steps more than once, when we
compute the hash code of a complex/nested aggregate structure.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 31

Repackaging

What we need to do is to repackage the algorithm, in a generic way

(to work with all types of hashers), to make the 3 stages above separately accessible:

1. Init / construction of the hasher

2. Write overloads for primitive/std types (append to the hash)

3. Finalize function -> size_t

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 31

Repackaging

What we need to do is to repackage the algorithm, in a generic way

(to work with all types of hashers), to make the 3 stages above separately accessible:

1. Init / construction of the hasher

2. Write overloads for primitive/std types (append to the hash)

3. Finalize function -> size_t

This technique ensures that:

we no longer need to have a combine step

we’re using the same hash algorithm for the entire data structure  
(no special "glue" for intermediate hash codes)

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 32

Repackaging

The salient idea here is that you let some "other" piece of code construct and
finalize the hashing algorithm.

Customer struct only appends to the state of the hasher.

Indeed, hashers need to become stateful, for this pattern to work.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 33

Repackaging
class fnv1a
{
 std::size_t h = 14695981039346656037u; ⇐ initialize internal state
public:

 // consume bytes into internal state
 void operator()(void const * key, std::size_t len) noexcept
 {
 unsigned char const * p = static_cast<unsigned char const*>(key);
 unsigned char const * const e = p + len;
 for (; p < e; ++p)
 h = (h ^ *p) * 1099511628211u;
 }

 explicit operator size_t() noexcept ⇐ finalize internal state to size_t
 {
 return h;
 }
};

 made the 3 stages separately accessible

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 34

Hashing Composite Types
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

Notice anything missing? 🙋

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 34

Hashing Composite Types
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

⬅ no more hash_combine() !!!

Notice anything missing? 🙋

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 34

Hashing Composite Types

Now we are using a “pure” FNV-1A
algorithm for the entire data structure.

(no more "glue" hash code)

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

⬅ no more hash_combine() !!!

Notice anything missing? 🙋

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 35

Swap the Hasher

This clean separation/repackaging of the 3 phases of hashing also allows great
flexibility in swapping the hasher algorithm without the need to touch the data model
and how each field recursively contributes to the overall digest (append/write).

🔶 The same technique can be used with almost every existing hashing algorithm,

eg. FNV1a, SipHash, Spooky, Murmur, CityHash.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 36

Hashing Composite Types

Let's move one more level: nested aggregate types.

class Sale
{
 Customer customer;
 Product product;
 Date date;

public:

 std::size_t hash_code() const
 {
 std::size_t h1 = customer.hash_code();
 std::size_t h2 = product.hash_code();
 std::size_t h3 = date.hash_code();

 return hash_combine(h1, h2, h3);
 }
};

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 36

Hashing Composite Types

Let's move one more level: nested aggregate types.

class Sale
{
 Customer customer;
 Product product;
 Date date;

public:

 std::size_t hash_code() const
 {
 std::size_t h1 = customer.hash_code();
 std::size_t h2 = product.hash_code();
 std::size_t h3 = date.hash_code();

 return hash_combine(h1, h2, h3);
 }
};

⬅ OMG, it’s back 😱

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 36

Hashing Composite Types

Let's move one more level: nested aggregate types.

class Sale
{
 Customer customer;
 Product product;
 Date date;

public:

 std::size_t hash_code() const
 {
 std::size_t h1 = customer.hash_code();
 std::size_t h2 = product.hash_code();
 std::size_t h3 = date.hash_code();

 return hash_combine(h1, h2, h3);
 }
};

⬅ OMG, it’s back 😱

How do we use just FNV-1A
for the entire aggregate class?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 37

hash_append()
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

Remember our Customer?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 38

hash_append()
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 38

hash_append()
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 std::size_t hash_code() const
 {
 fnv1a hasher;

 hasher(firstName.data(), firstName.size());
 hasher(lastName.data(), lastName.size());
 hasher(&age, sizeof(age));

 return static_cast<std::size_t>(hasher);
 }
};

Let some other piece of code construct
and finalize the fnv1a hash.

Customer should only append to the state
of fnv1a hasher.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 39

hash_append()
class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 friend void hash_append(fnv1a & hasher, const Customer & c)
 {

 hasher(c.firstName.data(), c.firstName.size());
 hasher(c.lastName.data(), c.lastName.size());
 hasher(&c.age, sizeof(c.age));

 ...
 }
};

Let some other piece of code construct
and finalize the fnv1a hash.

Customer should only append to the state
of fnv1a hasher.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 40

Hashing Composite Types

Back to our nested aggregate types:

class Sale
{
 Customer customer;
 Product product;
 Date date;

public:

 friend void hash_append(fnv1a & hasher, const Sale & s)
 {
 hash_append(hasher, s.customer);
 hash_append(hasher, s.product);
 hash_append(hasher, s.date);
 }
};

Types can "recursively" build upon one
another’s hash_append() to build up state
in fnv1a object.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 41

hash_append(🐢🐢🐢)

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 friend void hash_append(fnv1a & hasher, const Customer & c)
 {
 hash_append(hasher, c.firstName);
 hash_append(hasher, c.lastName);
 hash_append(hasher, c.age);
 }
};

Primitive and std-defined types can be given
hash_append() overloads.

=> simplified & uniform interface

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 42

Abstracting the algorithm

class Customer
{
 std::string firstName;
 std::string lastName;
 int age;
public:
 // ...

 template<class HashAlgorithm>
 friend void hash_append(HashAlgorithm & hasher, const Customer & c)
 {
 hash_append(hasher, c.firstName);
 hash_append(hasher, c.lastName);
 hash_append(hasher, c.age);
 }
};

If all hash algorithms use a uniform interface,
we can swap any hasher into our data type.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 43

Primitives

For primitive types that are contiguously hashable

we can just send their bytes to the hash algorithm, in hash_append().

template <class HashAlgorithm>
void hash_append(HashAlgorithm & hasher, int i)
{
 hasher(&i, sizeof(i));
}

template <class HashAlgorithm, class T>
void hash_append(HashAlgorithm & hasher, T * p)
{
 hasher(&p, sizeof(p));
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 44

Recipe 🧾

Even a complicated class is ultimately made up of scalars, located in discontiguous
memory.

hash_append() appends each byte to the HashAlgorithm state by "recursing down"
into the aggregated data structure to find the scalars.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 44

Recipe 🧾

Even a complicated class is ultimately made up of scalars, located in discontiguous
memory.

hash_append() appends each byte to the HashAlgorithm state by "recursing down"
into the aggregated data structure to find the scalars.

Steps:

Every type has a hash_append() overload

Each overload will either call hash_append() on its bases and members, or it will

send bytes of its memory representation to the HashAlgorithm (scalars)

No type is aware of the concrete HashAlgorithm implementation

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 44

Recipe 🧾

Even a complicated class is ultimately made up of scalars, located in discontiguous
memory.

hash_append() appends each byte to the HashAlgorithm state by "recursing down"
into the aggregated data structure to find the scalars.

Steps:

Every type has a hash_append() overload

Each overload will either call hash_append() on its bases and members, or it will

send bytes of its memory representation to the HashAlgorithm (scalars)

No type is aware of the concrete HashAlgorithm implementation

 Just the salient parts of types

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 45

Tough bits...

There are some areas of debatable design considerations, wrt to hashing:

std::optional

should have a presence indicator in the hash?

should we consider optional as an either 0 or 1 size container of T?

std::variant

how should we encode the type discriminant?

🤔I want to chat with you about some of these things...

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 46

Example

{
 SomeHashAlgorithm hasher;

 hash_append(hasher, my_type);

 return static_cast<size_t>(hasher);
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 46

Example

{
 SomeHashAlgorithm hasher;

 hash_append(hasher, my_type);

 return static_cast<size_t>(hasher);
}

OK, but how do I stick this into a
std::unordered_set/map ?

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 47

GenericHash

Just wrap the whole thing up in a conforming hash function object:

template <class HashAlgorithm>
struct GenericHash
{
 using result_type = typename HashAlgorithm::result_type;

 template <class T>
 result_type operator()(const T & t) const noexcept
 {
 HashAlgorithm hasher;
 hash_append(hasher, t);
 return static_cast<result_type>(hasher);
 }
};

std::unordered_set<Customer, GenericHash<fnv1a>> my_set;

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 48

Hash algorithms… everywhere

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 49

Hash algorithms

It becomes trivial to experiment with different hashing algorithms,
to benchmark & optimize performance, minimize collisions, tune for
the input data, etc.

std::unordered_set<Sale, GenericHash<fnv1a>> my_set;

std::unordered_set<Sale, GenericHash<SipHash>> my_set;

std::unordered_set<Sale, GenericHash<Spooky>> my_set;

std::unordered_set<Sale, GenericHash<Murmur>> my_set;

std::unordered_set<Sale, GenericHash<CityHash>> my_set;

...

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 50

ISO-terica...
Paper Date (last rev) Title Discussion

N3333 2012-01-13 Hashing User-Defined Type in C++1y N3333 Discussion

N3573 2013-03-10 Heterogenous extensions to unordered containers

N3730 2013-08-28 Specializations and namespaces

N3876 2014-01-19 Convenience Functions to Combine Hash Values N3876 and N3898 Discussion

N3898 2014-01-20 Hashing and Fingerprinting N3898 Discussion

N3983 2014-05-07 Hashing tuple-like types

N3980 2014-05-24 Types Don't Know #

N3339 2015-04-09 Message Digest Library for C++

P0029r0 2015-09-21 A Unified Proposal for Composable Hashing P0029 Discussion

P0199r0 2016-02-11 Default Hash

P0513r0 2016-11-10 Poisoning the Hash D0513 Discussion

P0599r1 2017-03-02 noexcept for Hash Functions D0599 Discussion

P0809r0 2017-10-12 Comparing Unordered Containers

P0814r2 2018-02-12 hash_combine() Again P0814 Discussion

P0549r7 2020–02–17 Adjuncts to std::hash

http://wg21.link/n3333
http://wiki.edg.com/bin/view/Wg21kona2012/LibraryWorkingGroup#Hashing_User_Defined_Types_in_C
http://wg21.link/n3573
http://wg21.link/n3730
http://wg21.link/n3876
http://wiki.edg.com/bin/view/Wg21issaquah/N3876
http://wg21.link/n3898
http://wiki.edg.com/bin/view/Wg21issaquah/N3898
http://wg21.link/n3983
http://wg21.link/n3980
http://wg21.link/n4449
http://wg21.link/p0029r0
http://wiki.edg.com/bin/view/Wg21kona2015/P0029
http://wg21.link/p0199r0
http://wg21.link/p0513r0
http://wiki.edg.com/bin/view/Wg21issaquah2016/LWGFridayMorning
http://wg21.link/p0599r1
http://wiki.edg.com/bin/view/Wg21kona2017/LWGFridayAMPartOne
http://wg21.link/p0809r0
http://wg21.link/p0814r2
http://wiki.edg.com/bin/view/Wg21albuquerque/P0814
http://wg21.link/p0549r7

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 51

ISO-terica...

There were plenty of hashing-related papers in WG21.

Some of these try to build on prior work. Some bring forth new ideas.

Subsequent papers do not necessarily address the discussion point from previous work.

The discussion points brought up do not necessarily represent a consensus view.

gist.github.com/dietmarkuehl/file-lets-hash-things-over-md📖

https://gist.github.com/dietmarkuehl/b0767e76bc85e29e74f61e994f105ad9#file-lets-hash-things-over-md

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 52

ISO-terica...

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 53

🦀

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 54

Slide Title

I'm not here to:

convert anyone to 🦀 Rust

start any language wars

"sell the Rust snake oil"
tell you to RiiR

So, don't throw 🍅

Rust ❤ C++

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 55

Trait std::hash::Hash

This function feeds this value type into the given Hasher.

This is the append method, that contributes to the overall hash digest by
recursively calling hash() on all constituents of the structure.

// Required method
fn hash<H>(&self, state: &mut H)
 where H: Hasher;

impl Hash for Customer {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.first_name.hash(state);
 self.last_name.hash(state);
 self.age.hash(state);
 self.premium.hash(state);
 }
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 56

#[derive(Hash)]

You can derive Hash with #[derive(Hash)] if all fields implement Hash.

The resulting hash will be the combination of the values from calling hash on each field.

#[derive(Hash)]
struct Customer {
 first_name: String,
 last_name: String,
 age: i32,
 premium: bool,
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 56

#[derive(Hash)]

You can derive Hash with #[derive(Hash)] if all fields implement Hash.

The resulting hash will be the combination of the values from calling hash on each field.

#[derive(Hash)]
struct Customer {
 first_name: String,
 last_name: String,
 age: i32,
 premium: bool,
}

When implementing Equality for a type, we want to make sure equal values map to equal
hash codes.

This might not be always true, if not all members participate in the equality relationship.

➡

 #[derive(PartialEq, Eq, Hash)] ensures that property is upheld.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 57

Trait std::hash::Hash

This trait has implementors for almost all std types. See the complete list here.

Eg.

impl Hash for str {
 #[inline]
 fn hash<H: Hasher>(&self, state: &mut H) {
 state.write_str(self);
 }
}

impl Hash for String {
 #[inline]
 fn hash<H: Hasher>(&self, hasher: &mut H) {
 (**self).hash(hasher) <== falls back on the &str impl
 }
}

https://doc.rust-lang.org/std/hash/trait.Hash.html#implementors

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 58

Trait std::hash::Hasher

And this brings us to the actual Hasher object, that will implement a particular algorithm.

 // Required methods
 fn finish(&self) -> u64;
 fn write(&mut self, bytes: &[u8]);

 // Provided methods (many helpers)
 fn write_u8(&mut self, i: u8) { ... }
 fn write_i32(&mut self, i: i32) { ... }
...
 fn write_str(&mut self, s: &str) { ... }

This is the part of the hashing infra that provides the protocol for a particular Hasher
implementation – that holds the algorithm for the hasher.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 59

Trait std::hash::Hasher

Instances of Hasher usually represent state that is changed while hashing data, by
“appending” to the hash digest and ultimately ensuring that the algorithm finalization
step is executed.

Most of the time, Hasher instances are used in conjunction with the Hash trait.

let mut hasher = DefaultHasher::new();

hasher.write_u32(1989);
hasher.write_u8(11);
hasher.write_i64(1729);
hasher.write_str("Foo");

println!("Hash is {:x}", hasher.finish());

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 60

Trait std::hash::Hasher

There is a potentially brittle aspect of this design:

➡ the order of subsequent write() calls cannot be checked/enforced, eg. for
aggregated structs.

Thus, to produce the same hash value, Hash implementations must ensure for
equivalent items that exactly the same sequence of calls is made – the same methods
with the same parameters in the same order.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 60

Trait std::hash::Hasher

There is a potentially brittle aspect of this design:

➡ the order of subsequent write() calls cannot be checked/enforced, eg. for
aggregated structs.

Thus, to produce the same hash value, Hash implementations must ensure for
equivalent items that exactly the same sequence of calls is made – the same methods
with the same parameters in the same order.

If your type is implementing Hash, you generally do not need to call these write()
functions directly, as the [impl Hash] does, so you should prefer that instead.

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 61

Trait std::hash::Hasher

The Rust std library provides a couple of implementors for this trait:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 61

Trait std::hash::Hasher

RandomState - is the default state for std HashMap types.

The Rust std library provides a couple of implementors for this trait:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 61

Trait std::hash::Hasher

RandomState - is the default state for std HashMap types.

DefaultHasher

the internal algorithm is not specified, and so it and its hashes should not be

relied upon over releases

a general-purpose hashing algorithm (SipHasher13): it runs at a good speed

(competitive with Spooky and City) and permits strong keyed hashing

the default Hasher used by RandomState

The Rust std library provides a couple of implementors for this trait:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 61

Trait std::hash::Hasher

RandomState - is the default state for std HashMap types.

DefaultHasher

the internal algorithm is not specified, and so it and its hashes should not be

relied upon over releases

a general-purpose hashing algorithm (SipHasher13): it runs at a good speed

(competitive with Spooky and City) and permits strong keyed hashing

the default Hasher used by RandomState

SipHasher [deprecated]

The Rust std library provides a couple of implementors for this trait:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 61

Trait std::hash::Hasher

RandomState - is the default state for std HashMap types.

DefaultHasher

the internal algorithm is not specified, and so it and its hashes should not be

relied upon over releases

a general-purpose hashing algorithm (SipHasher13): it runs at a good speed

(competitive with Spooky and City) and permits strong keyed hashing

the default Hasher used by RandomState

SipHasher [deprecated]

Adler32 – a typical Adler-32 checksum

The Rust std library provides a couple of implementors for this trait:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 62

Trait std::hash::BuildHasher

A trait for creating instances of Hasher.

A BuildHasher is typically used (eg. by HashMap) to create Hashers for each key such
that they are hashed independently of one another, since Hashers contain state (digest).

fn build_hasher(&self) -> Self::Hasher;

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 62

Trait std::hash::BuildHasher

A trait for creating instances of Hasher.

A BuildHasher is typically used (eg. by HashMap) to create Hashers for each key such
that they are hashed independently of one another, since Hashers contain state (digest).

fn build_hasher(&self) -> Self::Hasher;

For each instance of BuildHasher, the Hashers created should be identical.

That is, if the same stream of bytes is fed into each hasher, the same output will also
be generated:

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 62

Trait std::hash::BuildHasher

A trait for creating instances of Hasher.

A BuildHasher is typically used (eg. by HashMap) to create Hashers for each key such
that they are hashed independently of one another, since Hashers contain state (digest).

fn build_hasher(&self) -> Self::Hasher;

For each instance of BuildHasher, the Hashers created should be identical.

That is, if the same stream of bytes is fed into each hasher, the same output will also
be generated:

let s = RandomState::new();
let mut hasher_1 = s.build_hasher();
let mut hasher_2 = s.build_hasher();
hasher_1.write_u32(8128);
hasher_2.write_u32(8128);
assert_eq!(hasher_1.finish(), hasher_2.finish());

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 63

std::hash::BuildHasherDefault

The standard way to create a default BuildHasher instance for types that
implement Hasher and Default.

#[derive(Default)]
struct FancyHasher;

impl Hasher for FancyHasher {
 fn write(&mut self, bytes: &[u8]) {
 // hashing algorithm (append/digest)
 }

 fn finish(&self) -> u64 {
 // hashing algorithm (finalization step)
 }
}

type FancyBuildHasher = BuildHasherDefault<FancyHasher>;
let hash_map = HashMap::<Customer, Records, FancyBuildHasher>::default();

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 64

Complex Aggregates

Types can recursively build upon one another’s hash() to build up state in Hasher object.

hash() appends each byte to the Hasher state by recursing down into the data structure,
to find the scalars (plain types). -- just for the salient parts of the data

struct Sale {
 customer: Customer,
 product: Product,
 date: Date,
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 65

Complex Aggregates

impl Hash for Sale {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.customer.hash(state); // deep traversal to Customer hashing
 self.product.hash(state); // deep traversal to Product hashing
 self.date.hash(state); // deep traversal to Date hashing
 }
}

impl Hash for Date {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.year.hash(state); // deep traversal stops on trivial type (u32)
 self.month.hash(state);// deep traversal stops on trivial type (u32)
 self.day.hash(state); // deep traversal stops on trivial type (u32)
 }
}

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 66

Complex Aggregates

If no customization is needed (how the type needs to contribute to the hash digest),
the simplest path is to derive:

#[derive(Hash, Eq, PartialEq)]
struct Sale { }

// Define the HashMap with the default hasher
let mut sales_map: HashMap<Sale, u64> = HashMap::new();
sales_map.insert(Sale::new(...), 1500);

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 66

Complex Aggregates

If no customization is needed (how the type needs to contribute to the hash digest),
the simplest path is to derive:

#[derive(Hash, Eq, PartialEq)]
struct Sale { }

// Define the HashMap with the default hasher
let mut sales_map: HashMap<Sale, u64> = HashMap::new();
sales_map.insert(Sale::new(...), 1500);

// Define the HashMap with a custom hasher (eg. SipHasher)
type SipHasherMap<K, V> = HashMap<K, V, BuildHasherDefault<SipHasher>>;
let mut sales_map: SipHasherMap<Sale, u64> = HashMap::default();

sales_map.insert(Sale::new(...), 1500);

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 67

Conclusion

We introduced a hashing "framework" for:

easy experimenting and benchmarking with different hash algorithms

easy swapping of hashing algorithms (later on)

hashing complex aggregated user-defined types

enabling easy comparisons of hashing techniques

.finalize()

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 67

Conclusion

We introduced a hashing "framework" for:

easy experimenting and benchmarking with different hash algorithms

easy swapping of hashing algorithms (later on)

hashing complex aggregated user-defined types

enabling easy comparisons of hashing techniques

.finalize()

std::unordered_set<Sale, GenericHash<fnv1a>> my_set;

std::unordered_set<Sale, GenericHash<SipHash>> my_set;

std::unordered_set<Sale, GenericHash<Spooky>> my_set;

std::unordered_set<Sale, GenericHash<Murmur>> my_set;

std::unordered_set<Sale, GenericHash<CityHash>> my_set;

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 68

Goals

.digest()
✔

✔

✔

✔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 68

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

.digest()
✔

✔

✔

✔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 68

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

Type designers (developers) can create their hash support just once,
without worrying about what hashing algorithm should be used.

.digest()
✔

✔

✔

✔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 68

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

Type designers (developers) can create their hash support just once,
without worrying about what hashing algorithm should be used.

We gained practical insights and mechanisms to implement, customize, and
evaluate hash functions, enhancing software performance and reliability.

.digest()
✔

✔

✔

✔

2024 Victor Ciura | @ciura_victor - So You Think You Can Hash 68

Goals

Hash algorithm designers can concentrate on designing better hash algorithms,
with little worry about how these new algorithms can be incorporated into
existing code.

Type designers (developers) can create their hash support just once,
without worrying about what hashing algorithm should be used.

We gained practical insights and mechanisms to implement, customize, and
evaluate hash functions, enhancing software performance and reliability.

.digest()

We want to enforce a clear separation: no type should be aware of the concrete
HashAlgorithm to be used with it, rather only be concerned with how it contributed
to the digest (which underlying parts).

✔

✔

✔

✔

@ciura_victor Victor Ciura
Principal Engineer

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

So You Think You Can Hash

CppCon
September 2024

https://twitter.com/ciura_victor

