Unleashing - The Ferris Within

EuroRust
October 2024

¥ @ciura_victor Victor Ciura
& @ciura_victor@hachyderm.io Principal Engineer

W @ciuravictor.bsky.social Rust Tooling @ Microsott

https://twitter.com/ciura_victor

Abstract

"Let's rewrite it in Rust” is no longer a party joke. It's happening!

Let me share a couple of stories of learning, appreciating and rewriting stuff in Rust. How we came
to love ¥ Ferris: cargo cult or real need?

What is it like to come to Rust from two very different directions: C++ and C#? What are the gaps,
the needs, the gems and the tools you should know about? Here's a real journey and the various
experiments leading up towards the success stories at Microsoft.

What have we learned and can bring back to day-to-day C++?
Want to compare notes? Let's chat.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

About me

)

Advanced Installer Clang Power Tools Oxidizer SDK

ﬂ ¥ @ciura_victor
& @ciura_victor@hachyderm.io

Visual C++ Rust Tooling W @ciuravictor.bsky.social

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

>0 Why Rust is Not Widely Adopted?

Viature ecosystem: Maturity of the safety ecosystem built around C and C++

I(fra meworks/standards/ processes) Vs Rust. Support for safety certified products in C and C++ is broad,
ots of tools, lots of assessors, lots of companies to cover the liability, lots of standards.

Lack of tooling for Rust: Mathworks doesn’t offer Rust code generation from Simulink models, for |
example.

| : dware provides C style APIs. For example, the AEM GlobalPlattorm ’
|Hardware support: most har P

‘ ' ' d execution environment supports Rust you would then
one APl is C style, so even if your truste .
e hy not just do C?

Existing engineerin ~dd bugs; mentorship from experts eaquiicaita dalRies

Rust. New programmers

© 2024 Robert C. Seacord

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://ndctechtown.com/agenda/memory-safety-rust-vs-c/a60e72d4b894

First Encounter

Lars Marowsky-Brée -
@larsmb@mastodon.online

@lina @mstrohm There's two reactions to someone who knows
C(++) to deal with learning about Rust -

Either you have a joyful breakdown because someone understands
your PTSD and offers you a safe haven,

Or you end up defending your PTSD because you've invested so
much into the past.

Aug 31,2024,07:33PM - (\, - Web
mastodon.online/@larsmb/113057830402545219

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 4

https://mastodon.online/@larsmb/113057830402545219

The C++ Playbook to Safety

At least it's not rust!

Rewrite it In... Rust SafeC++?

- A cakewalk and eating it too
- But we care about safety, right?

-~ Dogma... galore

-~ Down with Safety!

~ To UB or not to UB? == Rewrite 1t 1n a
slightly different™ C++

*Yet completely incompatible

- Correct by confusion
~ ++(C++) successor languages

- Borrowing the borrow checker O'RLY?

cor3ntin

cor3ntin.github.io/posts/safety/

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://cor3ntin.github.io/posts/safety/

Safety

Rewrite it in... Rust SafeC++7 .1

The A Register’

The empire of C++ strikes back with Safe C++

thereqister.com/2024/09/16/safe c plusplus

= S++ Circle Compiler

Q)

safecpp.org/P3390

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://cor3ntin.github.io/posts/safety/
https://www.theregister.com/2024/09/16/safe_c_plusplus/

Choices

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

New (C++) Iis the enemy of the old

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

twitter.com/tvaneerd/status/1387

8

https://twitter.com/tvaneerd/status/1387631977373765632?s=20&t=PPc9s1KKudr36Os1MIR9nw

Rust ¥ C++

Not a zero-sum game.
We need to learn to play nice together... for a looong time!

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Engineering

Engineering, not programming

“Software engineering is programming integrated over time.”

abseil.io/swe-book/ch(01

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 10

https://abseil.io/resources/swe-book/html/ch01.html

Path... =

~ Why teams want Rust
~ Path to Rust
- Learning
- Bootstrapping
~ Engineering Systems
- RiiR
~ Interop aka. "not living in a bubble”
- Problems along the way, risk evaluation
< Early wins

- What's next?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

J

)
] l
EEEEEEEEEEE.
L L L L L L L L}
| |
L L L L1 L}
| |
] i
- |

|
\

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Safe C++

” National Security Agency Cybersecurity Information Sheet

Software Memory Safety

media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI SOFTWARE MEMORY SAFETY.PDF

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Microsoft CVEs
Is CVE a Memory Safety Issue (RCE, EOP, Info Disclosure)?

2018 2019 2020

m Memory safety issue Non-memory safety issue

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 15

Root cause of memory safety CVEs

100%
19
78
90% o8 /8 & L 135 B
J 30 a4 i 59 135
80% 61 120 333 21
103 86
o 103 08 78
70% 22 97 103
16 13 44 65
0% 3 186 188 94 42 H
8 4
4 8
4
24
40%
6 32 >1
30%
20%
36 35 43 * A
10% 36 78 110 133 450
81
O% | 1 | 1
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Heap Corruption

® Heap OOB Stack Corruption Type Confusion Uninitialized Use Use After Free Other

Embracing an Adversarial Mindset for C++ Security - Amanda Rousseau outube.com/watch?v=glkMbNLogZE

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 16

https://www.youtube.com/watch?v=glkMbNLogZE

Systems Language Overview

Rt e+ Jc

Object Lifetime Statically Enforced Not Enforced, unclear
path forward.
Type Safety Statically Enforced Not enforced, unclear
path forward.
Bounds Safety Enforced at runtime when Could be enforced for STL
needed containers.

Uninitialized Safety | Statically Enforced Not enforced, could be Stack could be enforced
enforced w/ breaking w/ breaking change.
change.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Bug Classes vs. Mitigations

Vulnerability Class Deterministic or % of Memory Safety Issue CVE’s
Probabilistic
Mitigation

Heap Non-Linear Overflow Probabilistic

Use-After-Free Probabilistic

Heap Non-Linear Overread Probabilistic

Type Confusion Not Mitigated 14%

We can mostly solve these.
Uninitialized doesn’t require

memory tagging.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

C++ Security Technologies SO:;CLe Modifications Dymamic Analysis

Attributes for drivers tn IDE

SAL
#pragma(strict_gs, . . .

N

ynamic Analysis

Static Analysis
(n IDE

Static Analysis

' /SDL -
/Analyze Address Sanitizer
GSL Checker libFuzzer
SAL CodeCoverage

plugin

Secure CodeGen

/GS /GS+
/XFG

/CFG
/CastGuard
/SafeEH

SUBSCRIBE

https://www.youtube.com/watch?v=i8_RfDAEjMs

Exploit Mitigation Timeline

SAFESEH ASLR HEASLR Jit Hardening
) High Entropy Address
Code Integrity (Cl) Space Layout CFG

Randomization Control Flow Guard

Sandbox

GS Cookie SEHOP Isolated Heap
Structured Exception

Return Flow Guard Handler Overwrite Delayed Free

(RFG) Protection

DEP

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 20

Exploit Mitigation Timeline

Castguard

Coming soon

Redirection Guard

ACG Shadow Stack

Arbitrary Code Guard Control-flow Enforcement
Technology (CET))

CIG Virtualization-based

Code Integrity Guard security (VBS) enclaves

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Exploit Mitigation Timeline

Castguard

Coming soon

Redirection Guard

ACG Shadow Stack

Arbitrary Code Guard Control-flow Enforcement
Technology (CET))

CIG Virtualization-based

Code Integrity Guard security (VBS) enclaves

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Microsoft

Ongoing efforts:

- Making step-changes in our SDL operations and making additional investments
to meet the evolving needs of cloud and emerging technologies
-~ Completing our deployment of CodeQL, integrated with GitHub Copilot learnings

~ Continue to invest in hardening C & C++ code
- Standardizing on Rust and other memory safe languages (MSLs)

~ Contribute & to support the work of the Rust Foundation

~ Assist developers making the transition from C, C++, C# to Rust

- we will continue to invest & in Rust developer tooling

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Hardening C & C++ code

Short term:

© tactical efforts to eliminate attack surface

- block exploit techniques

~ statically analyze vulnerabilities

- dynamic analysis & fuzzing

- CLFS signing, heap mitigations, ASLR, CFG, UMFD

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

Hardening C & C++ code

Long term:;

-~ Combination of software and hardware mitigations to detect & eliminate the most
common memory safety issues classes.

< InitAll / Pool Zeroing — Zero initialize stack variables and kernel pool allocations.

o CastGuard — Prevent illegal stack downcasts (type confusion).

- Memory Tagging — Broad impact to a variety of bug classes, hardware feature.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Hardening C & C++ code

Memory Tagging

- Helps developers catch bugs (eg. hardware ASAN), stops bugs from being
exploitable if they ship to customers.

~ Non-trivial CPU and memory overhead, but low enough to enable-by-default in
production.

- Google will deploy to Android soon; Apple also expected to deploy.

- Microsoft is actively working w/ silicon partners on Memory Tagging designs that
are scalable from small devices to large Azure servers.

- Goal: Enable by default for Windows to make a more reliable and secure OS.

Goal: Support in Azure, for both Windows and Linux

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust... where?

Is this guy getting to the Rust part already?

5.)
- -
Q

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Oh, Really?

Rust already in the Windows 11 kernel (2023)

C:\Windows\System32>dir win32k*
Volume in drive C has no label.
Volume Serial Number is E60B-9A9E

Directory of C:\Windows\System32

04/15/2023 09:50 PM 708,608 win32K.sys
O4/15/2023 09:49 PM 3,424 256 wmin3ihaen cus
Ou/15/2023 09:49 PM 110,592 win32kbase_rs.sys
ou4/15/2023 09:50 PM 4,194,304 winsZHtull.svs
04/15/2023 ©9:49 PM 40,960 win32kfull_rs.sys
O4/15/2023 09:49 PM 69,632 wWinozKIIS.Sy5
O4/15/2023 09:49 PM 98,304 win32ksgd.sys

7 File(s) 8,646,656 bytes

@ Dir(s) 116,366,049, 6280 bytes free

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 27

Rusty Windows

So this happened *» (public announcement - 2023)

Ported some Windows 11 core components from C++ to Rust

. . L

S \
o DirectWrite |
o GDI
<Y aom = @
David “dwizzzle” Weston
Director of OS Security
W @dwizzzleMSFT
youtube.com/watch?v=8T6CIX-y2AE mm !!. 2023

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

Rust iIn Windows

Learn by doing: Exploration — Flighting — Production (crawl — walk — run)

- Direct impact: Improve security

- @Gain experience with transitioning to Rust in production
~ Costs of learning Rust?

- Costs of porting to Rust?

~ Costs of writing new Rust components?

~ Is the full pipeline of Rust tooling ready?

- Dealing with debugging woes

~ Performance targets, POGO, etc.

~ Costs of maintaining a hybrid C++/Rust codebase?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

DWrite - DWriteCore

DWrite is a full stack for text analysis, layout & rendering:

< DWrite ships in Windows (dwrite.dll)

- DWriteCore is cross-platform: Windows, Linux, Android, iOS, macOS

- Office depends on DWrite(Core)

- Rust port work began in 2020
- DWriteCore internally uses COM-like interfaces:
- these were a good integration point for C++/Rust, and provided natural boundaries
for incremental porting
- DWriteCore public APIs are all COM

- Rust code is directly callable from app code, through COM interfaces

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Layout (10 KLOC) DWrite
* Line layout, justification |nterna|5

« Text run management: bold, italics, font face, underline, etc.

* Font fallback: Most fonts don’t contain all glyphs (e.g. emoji) Total ported code ~= 152 KLOC

gsom.e modules not shown).
Precise counts are

Shaping (36 KLOC) + OTLS (18 KLOC) complicated, due to test code.)

All code is 100% safe code,

 Complex script-specific layout: Thal, Indic, Arabic, Hebrew, Hangul, etc. except at C++ boundary

* Mandatory for complex scripts

« Many are driven by hand-written FSMs Not all parts of DWrite are
« Complex transformation rules stored in font files (OpenType) shown; just those relevant to
« Transforms sequences of glyphs, e.g. ligatures, connected scripts port

Unicode Analysis Glyph Data + Glyph Rendering (24 KLOC)

(6 KLOC) « Computes vector curves, runs bytecode programs (!!) from font
files to adjust them
» Very large property tables Rasterizes vector curves to bitmaps
. Defined by Unicode standard * Provides metrics (advance width, x-height, side bearings)

» Scales bitmaps for high-density scripts (e.g. Chinese)

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 31

iz Porting Time

< Truelype
- ~ 2 months (1 dev, experienced in Rust) for the core functionality
- ~ 2 months for exhaustive comparison testing and regression fixing
- Shaping + OTLS
o ~2 months
-~ ~ 1 month for comparison testing and regression fixing
- ~ 2 weeks for performance improvements
- Layout
~ ~1.5 months
o ~ 2 weeks for testing / regression fixing
<~ Unicode analysis
o ~ 2 weeks
- Low rate of regressions; very data-oriented

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Win32k GDI - Rust

Ported the GDI REGION components:

~ Models overlapping controls (e.g., windows) in GDI

- "Leaf node" data type: few dependencies, many dependents

- Old (late 80s, early 90) and perf critical (designed for i286/i386)

- Maintenance nightmare: open-coded vector resizing and ref-counting

-~ Windows boots with the Rust version, and all GDI tests pass

< In flight testing, to prove viabillity

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

Win32k GDI - Rust

- Performance of ported code is excellent

- Office tests, micro-benchmarks
< This work has driven some contributions to upstream Rust project
© Lots of calls to extern C/C++ functions => still a lot of unsafe code

~ Unsafe area is reducing as we port more and more code to Rust

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

OpenHCL - OpenVMM

~ OpenHCL is a para-virtualization layer built from the ground-up in Rust
~ Azure Boost Is an accelerator system that offloads server virtualization
processes traditionally performed by the hypervisor and host OS onto

purpose-built software and hardware.

~ OpenHCL

~ a privileged guest compatiblility layer

- In Azure Boost

<~ In Trusted Launch VMs

-~ In Azure confidential VMs

Evolving Azure’s virtualization model:

Evolved Architecture

Host OS

MLIUTE

Hardware

YWinoows

Guest OS (VM)
Vindows/Linux

techcommunity.microsoft.com/t5/windows-os-platform-blog/openhcl-evolving-azure-s-virtualization-model

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

34

https://techcommunity.microsoft.com/t5/windows-os-platform-blog/openhcl-evolving-azure-s-virtualization-model/ba-p/4248345

Oxidation

More oxidation ¥ efforts in progress...

C/C++ Rust C#

e

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

C++ Interop

“Based on historical vulnerability density statistics, Rust has proactively
prevented hundreds of vulnerabilities from impacting the Android ecosystem.
This investment aims to expand the adoption of Rust across various

components of the platform.”
— Dave Kleidermacher, Google Vice President of Engineering, Android Security & Privacy

“While Rust may not be suitable for all product applications,
prioritizing seamless interoperability with C++ will accelerate wider
community adoption, thereby aligning with the industry goals of
iImproving memory safety.”

— Royal Hansen, Google Vice President of Safety & Security

foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust and C++ interoperability

It’s important for Rust to be able to call C++ functions (and vice-versa) in a way that
meets the following criteria:

-~ No need for excessive unsafe keyword

- No perf overhead (avoid marshaling costs, eg. copying strings)

-~ No boilerplate or re-declarations / No C++ annotations

- Broad type support - with safety

- Ergonomics - with safety

- Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
- Plays well with C++ ABI

- Easily automated

~ Hybrid build systems (CMake, cargo, ...)

Choose... some?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust and C++ interoperability

There's (some) progress in Rust community in solving some of these problems.
& cxx, autocxx, bindgen, cbindgen, diplomat, crubit, etc.

But way more work is needed here!

2017

a4

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://github.com/dtolnay/cxx
https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/google/crubit

Internal Crate Registry

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Crates Audit

cargo vet audits.toml

Tool to help projects ensure that third-party Rust dependencies have been audited
by a trusted entity.

Downsides:

~ review format is too sparse
~ Just marking a crate version as safe-to-run or safe-to-deploy
~ add optional notes (but no more details)

~ no abillity to track internal crate usage, relative to reviews

mozilla.github.io/cargo-vet/ googleblog.com/2023/05/open-sourcing-our-rust-crate-audits

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

A system that records guidance from Microsoft developers on using Rust crates,
both public and internal ones.

Questions this system helps answer:
-~ What Rust crates should my project use, or not use?

-~ How should | evaluate public Rust crates |'m considering using, and record the

evaluation?
-~ What are the preferred crates for particular purposes?

-~ How to keep a rigorous SBOM posture for the project?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

- Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a hobby-project crate, with a single owner who is not maintaining it anymore.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

- Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a hobby-project crate, with a single owner who is not maintaining it anymore.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a hobby-project crate, with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a hobby-project crate, with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk, in the form of potential security
Issues, stablility issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a hobby-project crate, with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

- A unified, unbiased, highly automatable crate scoring system used throughout all orgs at
Microsoft.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

-
\

ONE DOES NOT{SIMBLY, &

REWRITEIN RUST

NELCEIENERI

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 41

HA

ONE DOES NOT{SIM

B

"~ REWRITEIN RUST

NELCEIENERI
2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 41

Unleashing - The Ferris Within

EuroRust
October 2024

¥ @ciura_victor Victor Ciura
& @ciura_victor@hachyderm.io Principal Engineer

W @ciuravictor.bsky.social Rust Tooling @ Microsott

https://twitter.com/ciura_victor

