Unleashing - The Ferris Within

NDC { TechTown }
September 2024
¥ @ciura_victor Victor Ciura
& @ciura_victor@hachyderm.io Principal Engineer

W @ciuravictor.bsky.social Rust Tooling @ Microsott

https://twitter.com/ciura_victor

Abstract

"Let's rewrite it in Rust” is no longer a party joke. It's happening!

Let me share a couple of stories of learning, appreciating and rewriting stuff in Rust. How we came
to love ¥ Ferris: cargo cult or real need?

What is it like to come to Rust from two very different directions: C++ and C#? What are the gaps,
the needs, the gems and the tools you should know about? Here's a real journey and the various
experiments leading up towards the success stories at Microsoft.

What have we learned and can bring back to day-to-day C++?
Want to compare notes? Let's chat.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

About me

)

Advanced Installer Clang Power Tools Oxidizer SDK

ﬂ ¥ @ciura_victor
& @ciura_victor@hachyderm.io

Visual C++ Rust Tooling W @ciuravictor.bsky.social

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

>0 Why Rust is Not Widely Adopted?

Viature ecosystem: Maturity of the safety ecosystem built around C and C++

I(fra meworks/standards/ processes) Vs Rust. Support for safety certified products in C and C++ is broad,
ots of tools, lots of assessors, lots of companies to cover the liability, lots of standards.

Lack of tooling for Rust: Mathworks doesn’t offer Rust code generation from Simulink models, for |
example.

| : dware provides C style APIs. For example, the AEM GlobalPlattorm ’
|Hardware support: most har P

‘ ' ' d execution environment supports Rust you would then
one APl is C style, so even if your truste .
e hy not just do C?

Existing engineerin ~dd bugs; mentorship from experts eaquiicaita dalRies

Rust. New programmers

© 2024 Robert C. Seacord

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://ndctechtown.com/agenda/memory-safety-rust-vs-c/a60e72d4b894

Rust ¥ C++

I'm not here to:

~ convert anyone to & Rust

~ start any language wars
o "sell the Rust snake oil"

- tell you to RiiR

So, don't throw @

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust ¥ C++

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Engineering

Engineering, not programming

“Software engineering is programming integrated over time.”

abseil.io/swe-book/ch(01

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://abseil.io/resources/swe-book/html/ch01.html

Engineering

Bootstrapping a team/project
Finding the right combination of skills (systems, services, Rust)

Expectations, misconceptions, myths

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Path... =

- Why teams want Rust
- Path to Rust
- Learning
- Bootstrapping
- Engineering Systems
- RIiR
~ Interop aka. "not living in a bubble”
- Problems along the way

< Early wins

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

J

)
] l
EEEEEEEEEEE.
L L L L L L L L}
| |
L L L L1 L}
| |
] i
- |

|
\

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Safe C++7

C++ is inherently unsafe and there's
very little™ we can do about it

We've known this for years before NSA &

media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI SOFTWARE MEMORY SAFETY.PDF

National Security Agency @ Cybersecurity Information Sheet

Software Memory Safety

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Microsoft CVEs
Is CVE a Memory Safety Issue (RCE, EOP, Info Disclosure)?

2018 2019 2020

m Memory safety issue Non-memory safety issue

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 12

100%

Root cause of memory safety CVEs

90%

80%

70%

60%

50% 34 ' 31 210

47
39

40%

30%

20% |

10% 8

0%
2015 2016 2017 2018 2019 2020 2021 2022

m Heap Corruption Heap OOB Read Other Stack Corruption Type Confusion Uninitialized Use m Use After Free

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Systems Language Overview

Rt e+ Jc

Object Lifetime Statically Enforced Not Enforced, unclear
path forward.
Type Safety Statically Enforced Not enforced, unclear
path forward.
Bounds Safety Enforced at runtime when Could be enforced for STL
needed containers.

Uninitialized Safety | Statically Enforced Not enforced, could be Stack could be enforced
enforced w/ breaking w/ breaking change.
change.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Bug Classes vs. Mitigations

Vulnerability Class Deterministic or % of Memory Safety Issue CVE’s
Probabilistic
Mitigation

Heap Non-Linear Overflow Probabilistic

Use-After-Free Probabilistic

Heap Non-Linear Overread Probabilistic

Type Confusion Not Mitigated 14%

We can mostly solve these.
Uninitialized doesn’t require

memory tagging.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Microsoft

Ongoing efforts:

~ Making a step-changes in our SDL operations and making additional investments
to meet the evolving needs of cloud and emerging technologies

-~ Completing our deployment of CodeQL, integrated with GitHub Copilot learnings

~ Continue to invest in hardening C & C++ code

- Standardizing on Rust and other memory safe languages (MSLSs)

~ Contribute & to support the work of the Rust Foundation

- Assist developers making the transition from C, C++, C# to Rust

- we will continue to invest & in Rust developer tooling

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Safety

C++ will never be a 100% safe language

© type safety

~ bounds safety

< lifetime safety

< Initialization safety

~ object access safety
© thread safety

© arithmetic safety

" but it can be much safe(r) with some effort and good tooling

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 17

Hardening C & C++ code

Short term:

© tactical efforts to eliminate attack surface

- block exploit techniques

~ statically analyze vulnerabilities

- dynamic analysis & fuzzing

- CLFS signing, heap mitigations, ASLR, CFG, UMFD

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

Hardening C & C++ code

Long term:;

-~ Combination of software and hardware mitigations to detect & eliminate the most
common memory safety issues classes.

< InitAll / Pool Zeroing — Zero initialize stack variables and kernel pool allocations.

o CastGuard- Prevent illegal stack downcasts (type confusion).

- Memory Tagging — Broad impact to a variety of bug classes, hardware feature.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Hardening C & C++ code

Memory Tagging:

- Helps developers catch bugs (eg. hardware ASAN), stops bugs from being
exploitable if they ship to customers.

-~ Non-trivial CPU and memory overhead, but low enough to enable-by-default in
production.

- Google will deploy to Android soon; Apple also expected to deploy.

~ Microsoft is actively working w/ silicon partners on Memory Tagging designs that
are scalable from small devices to large Azure servers.

- Goal: Enable by default for Windows to make a more reliable and secure OS.

Goal: Support in Azure, for both Windows and Linux

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

C + + iS u n d e r att aC k - National Security Agency | Cybersecurity Information Sheet

... and the community Is responding v Software Memory Safety
defense.gov/2022/Nov/CSI SOFTWARE MEMORY SAFETY.PDF

Timur Doumler
Yy @timur_a_\udio. 2

CppbnSea
29 June 2023

- Anarti ception
Credit: NASA's Goddard Space Flight Center /E:

re—

What are we going to do?

Acknowledge the problem

Embrace our ethical responsibility

Get qualified

Quantify the threat landscape
Understand user impact

* Mitigate threats incrementally

* Work with others beyond the language
* Explore other languages

REMOVING NEEDLESS
UNDERFINED BEHAVIOR FOR A

SAFER C++

ALISDAIR MEREDITH

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Tradeoffs need to be made...

& 1o UB, or not to UB"

-- Prince Hamlet

We have not addressed C++ safety until we have eliminated all UB.
We can't completely eliminate UB from C++ (for good reasons?).

At minimum, unbounded undefined behaviors (that represent a single point of
failure) should be eliminated.

C++ will never be a safe language (guarantees)

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Choices

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Safety

An excellent essay on the subject of safety: "If we must, let's talk about safety”

cor3ntin.qgithub.io/posts/safety/

-~ A cakewalk and eating it too

- Borrowing the borrow checker
- But we care about safety, right?
- Dogma

-~ Down with Safety!

- UB

- Correct by confusion

© ++(C++) / Rust

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

-- Corentin Jabot

At least it's not rust!

Rewrite it in a
slightly different™ C++

*Yet completely incompatible

O'RLY? cor3ntin

https://cor3ntin.github.io/posts/safety/

Lifetime Safety

garbage collector &)
- dynamic memory analysis (ASan)
- statically enforce rules on references:
~ multiple immutable refs Il unique mutable ref
~ by compiler/language:
- borrow checker (Rust, Circle*)
» mutable value semantics (Val Hylo)
* no direct mutation (Haskell & other pure functional languages)
* by tooling (static lifetime analysis):
© clang-tidy
« MSVC
» other commercial analyzers (plenty of them)

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

AAA

The new C++ "AAA"

AAA (almost always analyze)

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

C++ Security Technologies SO:;CLe Modifications Dymamic Analysis

Attributes for drivers tn IDE

SAL
#pragma(strict_gs, . . .

N

ynamic Analysis

Static Analysis
(n IDE

Static Analysis

' /SDL -
/Analyze Address Sanitizer
GSL Checker libFuzzer
SAL CodeCoverage

plugin

Secure CodeGen

/GS /GS+
/XFG

/CFG
/CastGuard
/SafeEH

SUBSCRIBE

https://www.youtube.com/watch?v=i8_RfDAEjMs

[[lifetimebound]]

Static Analysis lifetime annotations for C++

~NEW:
[[clang::lifetimebound]] and [[msvc::1lifetimebound]]

discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377

learn.microsoft.com/en-us/cpp/code-quality/C26815

youtube.com/watch?v=fe6yu9AQIE4

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://www.youtube.com/watch?v=fe6yu9AQIE4
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
https://learn.microsoft.com/en-us/cpp/code-quality/c26815?view=msvc-170

Future of C++7?

P2771:
Thomas Neumann’s

Dependency Annotations)
Vale:
ytional References +

- >)Lified borrowing E Cabar oy

Cr+ CGore Lifetime Safety in C
. . ’ 1 * . = Iretime Sarety in C++:
Guidelines’ Lifetinx Past, Present and Future

Safety Profj

Hylo (formerly Val):
Mutable Value Semantics

Swift’s Law C

P Pl) 000/1:0302 > @ & @ O[] 5

Lifetime Safety in C++: Past, Present and Future - Gabor Horvath - CppCon 2023
youtube.com/watch?v=PTdy65m gRE

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within PAS

https://www.youtube.com/watch?v=PTdy65m_gRE

safe(r)

C++ will never be a safe language”

-
O

* but it can be much safe(r) with some effort and good tooling

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

RIIR

Just rewrite it in Rust &

A Mark Russinovich 4
=/Y @markrussinovich - Follow
Speaking of languages, it's time to halt starting any new
projects in C/C++ and use Rust for those scenarios where

a non-GC language is required. For the sake of security

and reliability. the industry should declare those languages
as deprecated.

11:50 PM - Sep 19, 2022 ;{; ®

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Microsoft Azure security evolution:
ﬁ Embrace secure multitenancy,
Confidential Compute, and Rust

By Jeffrey Cooperstein Partner Software Architect, Azure Security

microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

Microsoft Azure security evolution:
ﬁ Embrace secure multitenancy,
Confidential Compute, and Rust

By Jeffrey Cooperstein Partner Software Architect, Azure Security

& trust compute

microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

Really??

Rust in the Linux kernel (since 6.1)
-- with Linus Torvalds' blessing

The first Rust modules start to make their way into the Linux kernel (6.3+)

Ubuntu has done all the work to provide the right toolchain in the distro
and custom kernel patches (SAUCE) that allow easier acquisition and
build of Rust modules. @

ubuntu

wikipedia.org/wiki/Rust for Linux * but not getting all the love v

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://en.wikipedia.org/wiki/Rust_for_Linux

Really??

Rust already in the Windows 11 kernel (May 2023)

C:\Windows\System32>dir win32k*
Volume in drive C has no label.
Volume Serial Number is E60B-9A9E

Directory of C:\Windows\System32

04/15/2023 09:50 PM 708,608 win32K.sys
O4/15/2023 09:49 PM 3,424 256 wmin3ihaen cus
Ou/15/2023 09:49 PM 110,592 win32kbase_rs.sys
ou4/15/2023 09:50 PM 4,194,304 winsZHtull.svs
04/15/2023 ©9:49 PM 40,960 win32kfull_rs.sys
O4/15/2023 09:49 PM 69,632 wWinozKIIS.Sy5
O4/15/2023 09:49 PM 98,304 win32ksgd.sys

7 File(s) 8,646,656 bytes

@ Dir(s) 116,366,049, 6280 bytes free

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 34

Rusty Windows

So this happened *» ¢ (public announcement, April 2023)

Ported Windows 11 core components from C++ to Rust

o DirectWrite | ELE SO
o GDI
<Y momon @
David “dwizzzle” Weston
Director of OS Security
W @dwizzzleMSFT
youtube.com/watch?v=8T6CIX-y2AE MM !!. 2023

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s

Rust iIn Windows

Learn by doing: Exploration — Flighting — Production (crawl — walk — run)

< Direct impact: Improve security

~ @Gain experience with transitioning to Rust in production
~ Costs of learning Rust?

~ Costs of porting to Rust?

~ Costs of writing new Rust components?

~ Is the full pipeline of Rust tooling ready?

- Debugging, perf, cross-platform, POGO, etc.

~ Costs of maintaining a hybrid C++/Rust codebase?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

DWrite - DWriteCore

DWrite is a full stack for text analysis, layout & rendering:

~ DW'rite ships in Windows (dwrite.dll)

-~ DWriteCore is cross-platform: Windows, Linux, Android, iOS, macOS
- Office depends on DWrite(Core)
~ Rust port work began in 2020. DWriteCore is now ~152 KLOC of Rust

- DWriteCore internally uses COM-like interfaces:
- these were a good integration point for C++/Rust, and provided natural boundaries
for incremental porting

- DWriteCore public APls are all COM

- Rust code is directly callable from app code, through COM interfaces

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Layout (10 KLOC) DWrite
* Line layout, justification |nterna|5

« Text run management: bold, italics, font face, underline, etc.

* Font fallback: Most fonts don’t contain all glyphs (e.g. emoji) Total ported code ~= 152 KLOC

gsom.e modules not shown).
Precise counts are

Shaping (36 KLOC) + OTLS (18 KLOC) complicated, due to test code.)

All code is 100% safe code,

 Complex script-specific layout: Thal, Indic, Arabic, Hebrew, Hangul, etc. except at C++ boundary

* Mandatory for complex scripts

« Many are driven by hand-written FSMs Not all parts of DWrite are
« Complex transformation rules stored in font files (OpenType) shown; just those relevant to
« Transforms sequences of glyphs, e.g. ligatures, connected scripts port

Unicode Analysis Glyph Data + Glyph Rendering (24 KLOC)

(6 KLOC) « Computes vector curves, runs bytecode programs (!!) from font
files to adjust them
» Very large property tables Rasterizes vector curves to bitmaps
. Defined by Unicode standard * Provides metrics (advance width, x-height, side bearings)

» Scales bitmaps for high-density scripts (e.g. Chinese)

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 38

Porting Time

< Truelype
- ~ 2 months (1 dev, experienced in Rust) for the core functionality
- ~ 2 months for exhaustive comparison testing and regression fixing
- Shaping + OTLS
o ~2 months
-~ ~ 1 month for comparison testing and regression fixing
- ~ 2 weeks for performance improvements
- Layout
~ ~1.5 months
o ~ 2 weeks for testing / regression fixing
<~ Unicode analysis
o ~ 2 weeks
- Low rate of regressions; very data-oriented

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Win32k GDI - Rust

Ported the REGION components:

~ Models overlapping controls (e.g., windows) in GDI

- "Leaf node" data type: few dependencies, many dependents

- Old (late 80s, early 90) and perf critical (designed for i286/i386)

- Maintenance nightmare: open-coded vector resizing and ref-counting

-~ Windows boots with the Rust version, and all GDI tests pass

< In flight testing, to prove viabillity

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

Win32k GDI - Rust

- Performance of ported code is excellent
- Office tests, micro-benchmarks
< This work has driven contributions to upstream Rust project
© Lots of calls to extern C/C++ functions => still a lot of unsafe code
~ Unsafe area is reducing as we port more and more code to Rust

- Milestone: able to write a SysCall in completely safe code

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Oxidation

More oxidation & efforts in progress...

@

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Rust Fact vs. Fiction
5 Insights from Google's Rust journey

Rumor 1: Rust takes more than 6 months to learn — Debunked

Rumor 2: The Rust compiler is not as fast as people would like — Confirmed
Rumor 3: Unsafe code and interop are always the biggest challenges — Debunked
Rumor 4: Rust has amazing compiler error messages — Confirmed

Rumor 5: Rust code is high quality — Confirmed ime unticonfident wrifing Rust

Still ramping up
8.6%

More than 4 months
9.0%

2 - 3 weeks
27.0%

3 - 4 months
15.6%

é

1 -2 months
39.8%

opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 43

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

Android
naroid 14 1 B re-metal Rust New Code By Language in Android 13

in Android

A

security.googleblog.com/2023/10/bare-metal-rust-in-android

Memory Safety Vulnerabilities Per Year
250

200

150
® Rust ® Java ® Kotlin C C++

100

50

2019 (10) 2020 (11) 2021 (12) 2022 (13) . . .
security.googleblog.com/2022/12/memory-safe-languages-in-android-13

Year (Android release)

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within 44

https://security.googleblog.com/2023/10/bare-metal-rust-in-android.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1

C++ Interop

“Based on historical vulnerability density statistics, Rust has proactively
prevented hundreds of vulnerabilities from impacting the Android ecosystem.
This investment aims to expand the adoption of Rust across various

components of the platform.”
— Dave Kleidermacher, Google Vice President of Engineering, Android Security & Privacy

“While Rust may not be suitable for all product applications,
prioritizing seamless interoperability with C++ will accelerate wider
community adoption, thereby aligning with the industry goals of
iImproving memory safety.”

— Royal Hansen, Google Vice President of Safety & Security

foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/

Interop

It’s important for Rust to be able to call C++ functions in a way that meets the following

criteria:

-~ No need for excessive unsafe keyword

Rust and C++ interoperability

-~ No overhead in the general case

- No boilerplate or re-declarations / No C++ annotations

- Broad type support - with safety
- Ergonomics - with safety

#% There's progress in Rust community in solving some of these problems.

@ cxx, autocxx, bindgen, cbindgen, diplomat, crubit

2024 Victor Ciura | @ciura_victor -

Unleashing = The Ferris Within

https://github.com/dtolnay/cxx
https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/google/crubit

Learning Rust

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

First Encounter

Lars Marowsky-Brée -
@larsmb@mastodon.online

@lina @mstrohm There's two reactions to someone who knows
C(++) to deal with learning about Rust -

Either you have a joyful breakdown because someone understands
your PTSD and offers you a safe haven,

Or you end up defending your PTSD because you've invested so
much into the past.

Aug 31,2024,07:33PM - (\, - Web

mastodon.online/@larsmb/113057830402545219

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

48

https://mastodon.online/@larsmb/113057830402545219

Learning

, - . Day 1: Morning Day 3: Morning
Google's Comprehensive Rust & Training
. . . 3. Welcome 18. Welcome
googdle.qgithub.io/comprehensive-rust/ & bello World

19. Memory Management

5. Types and Values
yP 20. Smart Pointers

© Rust Fundamentals: 4 days

6. Control Flow Basics

_ Day 3: Afternoon
o + Android Day 1: Afternoon

7. Welcome 21. Welcome

~ includes interoperability with C, C++, and Java

8. Tuples and Arrays 22. Borrowing

o 4 ChrOmlum 9. References 23. Lifetimes
~ includes interoperability with C++ and how to include third-party 10. User-Defined Types Day 4: Morning
. _ Day 2: Morning 24. Welcome
crates in Chromium '
o 15 [linie 25. Iterators
o + Bare-metal: kernel & embedded development 12. Pattern Matching 26 Modules
13. Methods and Traits .
o + Concurrency 27. Testing
Day 2: Afternoon
© classical concurrency (preemptively scheduling using threads 14 Welcorme Day 4: Afternoon
and mutexes) 15. Generics 28. Welcome

. 16. Standard Lib T 29. Error Handling
© async/await concurrency (cooperative multitasking using futures) andard Hbrary ypes

17. Standard Library Traits 30. Unsafe Rust

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

https://google.github.io/comprehensive-rust/

Crates Audit

cargo vet audits.toml

Tool to help projects ensure that third-party Rust dependencies have been audited
by a trusted entity.

Downsides:

~ review format is too sparse
~ Just marking a crate version as safe-to-run or safe-to-deploy
~ add optional notes (but no more details)

~ no abillity to track internal crate usage, relative to reviews

mozilla.github.io/cargo-vet/ googleblog.com/2023/05/open-sourcing-our-rust-crate-audits

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 50

https://mozilla.github.io/cargo-vet/
https://opensource.googleblog.com/2023/05/open-sourcing-our-rust-crate-audits.html

Rust Crate Review System

A system that records guidance from Microsoft developers on using Rust crates, both
public and internal.

Questions this system helps answer:
-~ What Rust crates should my Microsoft product use, or not use?

-~ How should | evaluate public Rust crates |'m considering using, and record the

evaluation?

-~ What are the preferred crates for particular purposes?

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

2024 Victor Ciura | @ciura_victor - Unleashing = The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a pet-project crate with a single owner who is not maintaining it anymore.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a pet-project crate with a single owner who is not maintaining it anymore.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a pet-project crate with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stabllity issues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a pet-project crate with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

Rust Crate Review System

- External crate dependencies, come with the inherent risk in the form of potential security
Issues, stability iIssues, and support and maintenance related issues.

~ Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability
reported on a pet-project crate with a single owner who is not maintaining it anymore.

- A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project, lowering the company’s vulnerability
naturally introduced by depending on third-party OSS solutions.

~ A unified, unbiased, highly automatable crate scoring system used in Microsoft.

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within

-
\

ONE DOES NOT{SIMBLY, &

REWRITEIN RUST

NELCEIENERI

2024 Victor Ciura | @ciura_victor - Unleashing * The Ferris Within 53

Unleashing - The Ferris Within

NDC { TechTown }
September 2024
¥ @ciura_victor Victor Ciura
& @ciura_victor@hachyderm.io Principal Engineer

W @ciuravictor.bsky.social Rust Tooling @ Microsott

https://twitter.com/ciura_victor

