
@ciura_victor Victor Ciura 
Principal Engineer 

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

Unleashing 🦀 The Ferris Within

NDC { TechTown }
September 2024

https://twitter.com/ciura_victor


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within X

Abstract

"Let's rewrite it in Rust" is no longer a party joke. It's happening! 


Let me share a couple of stories of learning, appreciating and rewriting stuff in Rust. How we came 
to love 🦀 Ferris: cargo cult or real need? 


What is it like to come to Rust from two very different directions: C++ and C#? What are the gaps, 
the needs, the gems and the tools you should know about? Here's a real journey and the various 
experiments leading up towards the success stories at Microsoft. 


What have we learned and can bring back to day-to-day C++?  

Want to compare notes? Let's chat.



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 2

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling

🦀

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 3

Slide Title

ndctechtown.com/agenda/memory-safety-rust-vs-c

https://ndctechtown.com/agenda/memory-safety-rust-vs-c/a60e72d4b894


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 4

I'm not here to:  


convert anyone to 🦀 Rust


start any language wars


"sell the Rust snake oil" 
tell you to RiiR

So, don't throw 🍅

Rust ❤ C++



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 5

Slide Title

Rust ❤ C++



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 6

Engineering

Engineering, not programming


abseil.io/swe-book/ch01

“Software engineering is programming integrated over time.”

🦩

https://abseil.io/resources/swe-book/html/ch01.html


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 7

Engineering

Bootstrapping a team/project


Finding the right combination of skills (systems, services, Rust)


Expectations, misconceptions, myths



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 8

Path... 🦀

Why teams want Rust


Path to Rust


Learning


Bootstrapping


Engineering Systems


RiiR


Interop aka. "not living in a bubble"


Problems along the way


Early wins



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 9

Slide Title
But Why?



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 9

Slide Title
But Why?



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within

💻

10

But Why?

🔥 👻 💸
🔒 ☁



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 11

Safe C++?

C++ is inherently unsafe and there's 
very little* we can do about it

We've known this for years before NSA 😄

media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

👻
🔒

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 12

Microsoft CVEs



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 13

Root cause of memory safety CVEs



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 14

Systems Language Overview



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 15

Bug Classes vs. Mitigations



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 16

Microsoft

Ongoing efforts:


Making a step-changes in our SDL operations and making additional investments 

to meet the evolving needs of cloud and emerging technologies


Completing our deployment of CodeQL, integrated with GitHub Copilot learnings


Continue to invest in hardening C & C++ code


Standardizing on Rust and other memory safe languages (MSLs) 


Contribute 💰 to support the work of the Rust Foundation


Assist developers making the transition from C, C++, C# to Rust 


we will continue to invest 💰 in Rust developer tooling



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 17

Safety

C++ will never be a 100% safe language

type safety

bounds safety

lifetime safety

initialization safety

object access safety

thread safety

arithmetic safety

* but it can be much safe(r) with some effort and good tooling 🧰 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 18

Hardening C & C++ code

Short term:


tactical efforts to eliminate attack surface 


block exploit techniques


statically analyze vulnerabilities 


dynamic analysis & fuzzing


CLFS signing, heap mitigations, ASLR, CFG, UMFD



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 19

Hardening C & C++ code

Long term:


Combination of software and hardware mitigations to detect & eliminate the most 

common memory safety issues classes.


InitAll / Pool Zeroing – Zero initialize stack variables and kernel pool allocations.


CastGuard– Prevent illegal stack downcasts (type confusion).


Memory Tagging – Broad impact to a variety of bug classes, hardware feature.



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 20

Hardening C & C++ code

Memory Tagging:


Helps developers catch bugs (eg. hardware ASAN), stops bugs from being 

exploitable if they ship to customers.


Non-trivial CPU and memory overhead, but low enough to enable-by-default in 

production.


Google will deploy to Android soon; Apple also expected to deploy.


Microsoft is actively working w/ silicon partners on Memory Tagging designs that 

are scalable from small devices to large Azure servers.


Goal: Enable by default for Windows to make a more reliable and secure OS. 


Goal: Support in Azure, for both Windows and Linux 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 21

C++ is under attack...
... and the community is responding 🤷

defense.gov/2022/Nov/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 22

Slide TitleTradeoffs need to be made...


"To UB, or not to UB" 
-- Prince Hamlet

We have not addressed C++ safety until we have eliminated all UB.


We can't completely eliminate UB from C++ (for good reasons*).


At minimum, unbounded undefined behaviors (that represent a single point of 
failure) should be eliminated.

C++ will never be a safe language (guarantees)➡



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 23

Choices



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 24

Safety

An excellent essay on the subject of safety: "If we must, let's talk about safety"

-- Corentin Jabotcor3ntin.github.io/posts/safety/

A cakewalk and eating it too


Borrowing the borrow checker


But we care about safety, right?


Dogma


Down with Safety!


UB


Correct by confusion


++(C++) / Rust

https://cor3ntin.github.io/posts/safety/


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 25

Lifetime Safety

garbage collector 😱
dynamic memory analysis (ASan)
statically enforce rules on references: 
multiple immutable refs || unique mutable ref

by compiler/language: 
borrow checker (Rust, Circle*)

• mutable value semantics (Val Hylo)
• no direct mutation (Haskell & other pure functional languages)
• by tooling (static lifetime analysis): 

clang-tidy
• MSVC
• other commercial analyzers (plenty of them)
•



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 26

AAA

AAA (almost always auto)


AAA (almost always analyze)

The new C++ "AAA"



youtube.com/watch?v=i8_RfDAEjMs

https://www.youtube.com/watch?v=i8_RfDAEjMs


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 28

[[lifetimebound]]

Static Analysis lifetime annotations for C++


~NEW: 

[[clang::lifetimebound]]  and  [[msvc::lifetimebound]]

youtube.com/watch?v=fe6yu9AQIE4

discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377

learn.microsoft.com/en-us/cpp/code-quality/C26815

https://www.youtube.com/watch?v=fe6yu9AQIE4
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
https://learn.microsoft.com/en-us/cpp/code-quality/c26815?view=msvc-170


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 29

youtube.com/watch?v=PTdy65m_gRE

https://www.youtube.com/watch?v=PTdy65m_gRE


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 30

safe(r)

C++ will never be a safe language*

* but it can be much safe(r) with some effort and good tooling 🧰 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 31

RiiR

Just rewrite it in Rust 🦀

👈



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 32

RiiR

microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 32

RiiR

microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/

🔒 trust compute

https://azure.microsoft.com/en-us/blog/microsoft-azure-security-evolution-embrace-secure-multitenancy-confidential-compute-and-rust/


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 33

Really?

wikipedia.org/wiki/Rust_for_Linux

Rust in the Linux kernel (since 6.1)

-- with Linus Torvalds' blessing

The first Rust modules start to make their way into the Linux kernel (6.3+)

Ubuntu has done all the work to provide the right toolchain in the distro 
and custom kernel patches (SAUCE) that allow easier acquisition and 
build of Rust modules.

 * but not getting all the love 🤷

https://en.wikipedia.org/wiki/Rust_for_Linux


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 34

Really?

Rust already in the Windows 11 kernel (May 2023)



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 35

Rusty Windows

So this happened 👀 (public announcement, April 2023) 


Ported Windows 11 core components from C++ to Rust 

DirectWrite  
GDI  
... 🤫

youtube.com/watch?v=8T6ClX-y2AE&t=2703s

https://www.youtube.com/watch?v=8T6ClX-y2AE&t=2703s


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 36

Rust in Windows

Learn by doing: Exploration → Flighting → Production (crawl → walk → run)


Direct impact: Improve security


Gain experience with transitioning to Rust in production


Costs of learning Rust?


Costs of porting to Rust?


Costs of writing new Rust components?


Is the full pipeline of Rust tooling ready? 


Debugging, perf, cross-platform, POGO, etc.


Costs of maintaining a hybrid C++/Rust codebase?



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 37

DWrite - DWriteCore

DWrite is a full stack for text analysis, layout & rendering:


DWrite ships in Windows (dwrite.dIl)


DWriteCore is cross-platform: Windows, Linux, Android, iOS, macOS


Office depends on DWrite(Core)


Rust port work began in 2020. DWriteCore is now ~152 KLOC of Rust


DWriteCore internally uses COM-like interfaces:  


these were a good integration point for C++/Rust, and provided natural boundaries 

for incremental porting


DWriteCore public APls are all COM 


Rust code is directly callable from app code, through COM interfaces



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 38



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 39

Porting Time

TrueType

~ 2 months (1 dev, experienced in Rust) for the core functionality

~ 2 months for exhaustive comparison testing and regression fixing


Shaping + OTLS

~ 2 months

~ 1 month for comparison testing and regression fixing

~ 2 weeks for performance improvements


Layout

~ 1.5 months

~ 2 weeks for testing / regression fixing


Unicode analysis

~ 2 weeks

Low rate of regressions; very data-oriented



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 40

Win32k GDI - Rust

Ported the REGION components: 


Models overlapping controls (e.g., windows) in GDI


"Leaf node" data type: few dependencies, many dependents


Old (late 80s, early 90) and perf critical (designed for i286/i386)


Maintenance nightmare: open-coded vector resizing and ref-counting


Windows boots with the Rust version, and all GDI tests pass 


In flight testing, to prove viability



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 41

Win32k GDI - Rust

Performance of ported code is excellent


Office tests, micro-benchmarks


This work has driven contributions to upstream Rust project


Lots of calls to extern C/C++ functions => still a lot of unsafe code


Unsafe area is reducing as we port more and more code to Rust


Milestone: able to write a SysCall in completely safe code



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 42

Oxidation

More oxidation 🦀 efforts in progress... 

🤐



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 43

Myths

Rust Fact vs. Fiction 

5 Insights from Google's Rust journey

opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

Rumor 1: Rust takes more than 6 months to learn – Debunked

Rumor 2: The Rust compiler is not as fast as people would like – Confirmed

Rumor 3: Unsafe code and interop are always the biggest challenges – Debunked

Rumor 4: Rust has amazing compiler error messages – Confirmed

Rumor 5: Rust code is high quality – Confirmed


https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 44

🤖 🦀

security.googleblog.com/2023/10/bare-metal-rust-in-android

security.googleblog.com/2022/12/memory-safe-languages-in-android-13

https://security.googleblog.com/2023/10/bare-metal-rust-in-android.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 45

C++ Interop

“Based on historical vulnerability density statistics, Rust has proactively 
prevented hundreds of vulnerabilities from impacting the Android ecosystem. 
This investment aims to expand the adoption of Rust across various 
components of the platform.” 

– Dave Kleidermacher, Google Vice President of Engineering, Android Security & Privacy

“While Rust may not be suitable for all product applications, 
prioritizing seamless interoperability with C++ will accelerate wider 
community adoption, thereby aligning with the industry goals of 
improving memory safety.” 

– Royal Hansen, Google Vice President of Safety & Security

foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/

https://foundation.rust-lang.org/news/google-contributes-1m-to-rust-foundation-to-support-c-rust-interop-initiative/


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 46

Interop

Rust and C++ interoperability

It’s important for Rust to be able to call C++ functions in a way that meets the following 
criteria:


No need for excessive unsafe keyword

No overhead in the general case

No boilerplate or re-declarations / No C++ annotations

Broad type support - with safety

Ergonomics - with safety


🚧 There's progress in Rust community in solving some of these problems.

⚙ cxx, autocxx, bindgen, cbindgen, diplomat, crubit

https://github.com/dtolnay/cxx
https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/google/crubit


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 47

🦀

Learning Rust



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 48

First Encounter

mastodon.online/@larsmb/113057830402545219

https://mastodon.online/@larsmb/113057830402545219


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 49

Learning
Google's Comprehensive Rust 🦀 Training
google.github.io/comprehensive-rust/

Rust Fundamentals: 4 days


+ Android 

includes interoperability with C, C++, and Java


+ Chromium 

includes interoperability with C++ and how to include third-party 
crates in Chromium


+ Bare-metal: kernel & embedded development


+ Concurrency 

classical concurrency (preemptively scheduling using threads 
and mutexes) 

async/await concurrency (cooperative multitasking using futures)

https://google.github.io/comprehensive-rust/


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 50

Crates Audit

mozilla.github.io/cargo-vet/

cargo vet

Tool to help projects ensure that third-party Rust dependencies have been audited 
by a trusted entity.

Downsides:


review format is too sparse


just marking a crate version as safe-to-run or safe-to-deploy 


add optional notes (but no more details)


no ability to track internal crate usage, relative to reviews

audits.toml➡

googleblog.com/2023/05/open-sourcing-our-rust-crate-audits

https://mozilla.github.io/cargo-vet/
https://opensource.googleblog.com/2023/05/open-sourcing-our-rust-crate-audits.html


2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 51

Rust Crate Review System

A system that records guidance from Microsoft developers on using Rust crates, both 
public and internal.


Questions this system helps answer: 


What Rust crates should my Microsoft product use, or not use?


How should I evaluate public Rust crates I'm considering using, and record the 

evaluation?


What are the preferred crates for particular purposes?



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 

Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of 
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability 
reported on a pet-project crate with a single owner who is not maintaining it anymore.



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 

Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of 
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability 
reported on a pet-project crate with a single owner who is not maintaining it anymore.



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 

Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of 
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability 
reported on a pet-project crate with a single owner who is not maintaining it anymore.

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of 
third-party crates by any internal Rust project, lowering the company’s vulnerability 
naturally introduced by depending on third-party OSS solutions. 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 

Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of 
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability 
reported on a pet-project crate with a single owner who is not maintaining it anymore.

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of 
third-party crates by any internal Rust project, lowering the company’s vulnerability 
naturally introduced by depending on third-party OSS solutions. 



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 52

Rust Crate Review System

External crate dependencies, come with the inherent risk in the form of potential security 
issues, stability issues, and support and maintenance related issues. 

Proactively ensure that MSFT Rust ecosystem is built on the stable and thriving part of 
the OSS Rust ecosystem, lowering the risk of being affected eg. by a vulnerability 
reported on a pet-project crate with a single owner who is not maintaining it anymore.

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of 
third-party crates by any internal Rust project, lowering the company’s vulnerability 
naturally introduced by depending on third-party OSS solutions. 

A unified, unbiased, highly automatable crate scoring system used in Microsoft.



2024  Victor Ciura  |  @ciura_victor  -  Unleashing 🦀 The Ferris Within 53

Slide Title



@ciura_victor Victor Ciura 
Principal Engineer 

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

Unleashing 🦀 The Ferris Within

NDC { TechTown }
September 2024

https://twitter.com/ciura_victor

