
@ciura_victor Victor Ciura 
Principal Engineer 

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

Swift ABI Resilience?

February 2025

C++
Rust
____
____

https://twitter.com/ciura_victor


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience X

Abstract

Is ABI merely an artifact of implementation in native programming languages or should it be 
considered part of their design? 

Some programming languages avoid this commitment, while others are still trying to figure out a 
path forward. 


No, this is not an “ABI - Now or Never” talk. We’re taking a different route, by following the design 
and evolution of the Swift ABI model and seeing what we can learn from it. 


From ABI stability & dynamic linking to designing for ABI resilience - a journey through resilient type 
layout, reabstraction & materialization, resilience in library evolution and (opt-out) performance 
costs. 


What can we learn from Swift’s ABI resilience? 

How does C++ navigate on this journey? 

Can Rust be liberated from the ABI conundrum?



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 2

What is ABI, anyway?

I grabbed 2 small bottles of water 
from the cooler... 

... and sat down in one of the 
afternoon sessions

A while back, 

at Meeting C++ conference,

in Berlin



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 2

What is ABI, anyway?

I grabbed 2 small bottles of water 
from the cooler... 

... and sat down in one of the 
afternoon sessions

A while back, 

at Meeting C++ conference,

in Berlin



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 3

ABI - Now or Never

In Feb 2020, in Prague, the ISO C++ committee took a series of polls 
on whether to break ABI, and decided not to... sort of.

 

There was no applause 😐


 
"I’m not sure we fully understood what we did  
and the consequences it could have."


-- not so anonymous C++ committee member

wg21.link/P2028

wg21.link/P1863

http://wg21.link/P2028
http://wg21.link/P1863


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 4

C++ ABI - Now or Never

cor3ntin.github.io/posts/abi/

https://cor3ntin.github.io/posts/abi/


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 5

Design or Implementation Detail?

No, this is not an “ABI - Now or Never” talk 😁


Is ABI merely an artifact of implementation in native programming languages 
or should it be considered part of their design? 


Some programming languages avoid this commitment, while others are still 
trying to figure out a path forward. 



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 6

Design or Implementation Detail?

ABI stability: benefits & risks


Dynamic linking 


Rust/C++ interop


Designing for ABI resilience 


Resilience in library evolution


Performance costs and (opt-out) strategy

How does C++ navigate on this journey?


What can we learn from Swift’s ABI resilience? 


Can Rust be liberated from the ABI conundrum?



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 7

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling

🦀

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 8

Disclaimer
I'm just an engineer, with some opinions on stuff...



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 9

What is ABI, anyway?

ABI can mean a lot of different things to different people. 


Is it platform, hardware, calling conv, language, compilers, std library, your code?


At the end of the day it’s a catch-all term for "implementation details" that at least two 
things need to agree on for everything to work.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 10

What is ABI, anyway?

ABI stability isn’t technically a property of a programming language. 


It’s really a property of a system and its toolchain.


ABI is something defined by the platform. 


The platform owner can just require you to use a particular compiler toolchain that 
happens to implement their "stable" ABI. 


If you care about dynamic linking (shared libraries).



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 11

What is ABI, anyway?

Layout of types 


size & alignment (stride)


offsets & types of fields


v-table entries


closures


Calling conventions


Name mangling (symbols)


Metadata (if applicable)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 12

ABI Stability - Why?

You don’t have to share the source code of your library


You can use the most recent compiler for your library


You don’t have to recompile everything (full project visibility)


Binaries can be shipped and updated independently (patches)


Multiple programs can share the same library (incl. std lib)


Plugins/extensions


Language interop

⚙⚙



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 13

ABI Stability - When?

Don't shut the door on future compiler & library improvements 


Stabilizing the ABI (too early)™ might miss optimization opportunities


implement a faster custom calling convention


implement optimal structure layout


improve the way a std utility works


NB. These are not impossible things! 


They are just tough engineering problems


We need to invest a lot of time and brain power to solve them



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 14

ABI Stability - Evolution of Software Libraries

Developers want to evolve their software libraries without breaking ABI

add new functionality


fix bugs


improve performance


A lot of these activities can break ABI

add a field to a class


make changes affecting v-table


(re)use existing padding for a new field?



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 15

ABI Stability Scorecard

Can we have stable ABI, pretty please? 


Go: NO


Rust: NO


Carbon: NO


Zig: NO


C++: <always has been meme> 🤷 ... but don't tell anyone!


Swift: YES, since v5.0 (most important thing ever!)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 16

ABI Stability

Zig natively supports C ABIs for extern things; which C ABI is used depends on the target 

you are compiling for (e.g. CPU architecture, operating system). 


This allows for near-seamless interoperation with code that was not written in Zig; the 

usage of C ABIs is standard amongst programming languages.


Zig internally does not use an ABI, meaning code should explicitly conform to a C ABI 

where reproducible and defined binary-level behavior is needed.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 17

ABI Stability

Go ABI specification


Go's ABI defines the layout of data in memory and the conventions for calling between 

Go functions 


This ABI is unstable and will change between Go versions


If you’re writing assembly code, please instead refer to Go’s assembly documentation, 

which describes Go’s stable ABI, known as ABI0


Go uses a common ABI design across all architectures (instead of the platform ABI) 


All functions defined in Go source follow ABIInternal


however, ABIInternal and ABI0 functions are able to call each other through 

transparent ABI wrappers



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 18

ABI Stability

Carbon / non-goals 🙂

github.com/carbon-language/carbon-lang#language-goals


❝ We also have explicit non-goals for Carbon, notably including:


a stable ABI for the entire language and library


perfect backwards or forwards compatibility


https://github.com/carbon-language/carbon-lang#language-goals


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 19

Stability ∞

The greatest champion of ABI stability and dynamic linking: 


C
That's plain old C, not Carbon, by the way :)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 20

The C ABI

Many software ecosystems require both long-term ABI stability  
and the ability to constantly evolve. 


These systems tend to use C as the stable ABI 


Evolving software components with a C ABI requires to manually and proactively 
introduce extra levels of indirection, to account for potential future changes.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 21

Stability ∞

pimpl
* one more level of indirection solves every problem, right?  😁

📦



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 22

The (early) 90s are calling...

COM interfaces

change API to hide implementation changes (break ABI)


IWidgetSomething, IWidgetSomething2, IWidgetSomething3 
MIDL for interop

metadata


Objective-C msg-send

~unstructured data

type erasure / everything dynamic / indirections

swizzling, isa



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 23

STD ~ ABI

🍔

Consistency



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 24

May I have some ABI?



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 25

May I have some ABI?

twitter.com/TitusWinters/status/1224351257479077889?s=20

https://twitter.com/TitusWinters/status/1224351257479077889?s=20


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 26

C++ the king of mix signals and ambivalent behavior

The committee will reject any proposal 
that could cause ABI breaks in existing 

STL components

Implementors* will not change/improve 
library components if it would cause an 

ABI break for clients

C++ will not officially commit to 
guaranteeing ABI stability 

C++ does not have an ABI resilience 
model (it's not stable)

🤷
wg21.link/P2028

wg21.link/P1863

http://wg21.link/P2028
http://wg21.link/P1863


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)

WG21 will not promise stability forever



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 27

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)

WG21 will not promise stability forever

WG21 wants to keep prioritizing performance over stability



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 28

The king of mix signals and ambivalent behavior



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 29

Is change even possible?

youtube.com/watch?v=8U3hl8XMm8c

👉

https://www.youtube.com/watch?v=8U3hl8XMm8c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the 

sake of stability

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the 

sake of stability

tweaks to string, vector, and other container layouts

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the 

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for 

function calls (language changes needed => zero-overhead for x64 call conv.)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the 

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for 

function calls (language changes needed => zero-overhead for x64 call conv.)

improving std::shared_ptr, eg. lock_exclusive()

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 30

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the 

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for 

function calls (language changes needed => zero-overhead for x64 call conv.)

improving std::shared_ptr, eg. lock_exclusive()

improving perf of std::mutex (std::shared_mutex is faster!)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 31

Clang libc++ ABI stability

There is a path forward:


libc++ aims to preserve a stable ABI to avoid subtle bugs 


    (when code built under the old ABI is linked with code built under the new ABI)


libc++ wants to make ABI-breaking improvements/fixes (user opt-in)


libc++ allows specifying an ABI version at build time: 

LIBCXX_ABI_VERSION=

1 (stable/default); 2 (unstable/next); 3 (when 2 will be frozen)...


always use the most cutting-edge, most unstable ABI: LIBCXX_ABI_UNSTABLE 

All or nothing! solution 😕

libcxx.llvm.org/DesignDocs/ABIVersioning.html
📖 Clang docs:

https://libcxx.llvm.org/DesignDocs/ABIVersioning.html


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 32

Design Choices

C++ / Rust / Carbon / ... Swift

Fast code Favor small* code

Heavy inlining Outlining

CPU utilization/saturation CPU power usage

Mostly* static linking 
(with occasional DLL madness) Dynamic linking (shared libraries)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 33

Outlining

LLVM Outlininer 
-Oz 

Outlining: 

Replacing repeated sequences of 
instructions with calls to equivalent functions.

(smaller code => icache)

youtube.com/watch?v=yorld-WSOeU
Jessica Paquette "Reducing Code Size Using Outlining"

developer.apple.com/videos/play/wwdc2019/409/
Jessica Paquette, JF Bastien "What's New in Clang and LLVM"

https://www.youtube.com/watch?v=yorld-WSOeU
https://developer.apple.com/videos/play/wwdc2019/409/


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 34

Swift who?

Ahead-Of-Time (AOT) compiled, but has a large runtime library


created to replace Objective-C on Apple’s platforms (native interop with Obj-C)


has classes and inheritance


interfaces, generics, closures, enums with payloads 


Automatic Reference Counting (ARC) 


simple function-scoped mutable borrows (inout)


emphasis on value semantics


structs/primitives (“values”) are “mutable xor shared” & stored inline


classes are mutably shared and boxed (using ARC) -> reference semantics


collections implement value semantics by being CoW (using ARC)



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 35

Swift

Language designed for Library Evolution

Swift was designed to explicitly account for a stable ABI. 


Swift espouses a principle of least regret for public interfaces, 
ensuring that the implementation details of a software module do not 
create a binary-compatibility contract that prevents future evolution.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 36

Swift

Language designed for Library Evolution

Principles for ABI-stable library evolution:


make all promises explicit


delineate what can and cannot change in a stable ABI


provide a performance model that indirects only when necessary


let the authors of libraries & consumers be in control

youtube.com/watch?v=MgPBetJWkmc

Doug Gregor 
Implementing Language Support for
ABI-Stable Software Evolution in Swift and LLVM

https://www.youtube.com/watch?v=MgPBetJWkmc


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 37

Evolving a struct

Person struct changes size when new fields are added


Offset of fields changes whenever layout changes



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 38

Using the struct

array

offset



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 39

The Library

Type Layout should be as-if we had the whole program:


Person library should layout the type without indirection


Expose metadata with layout information:

size/alignment of type


offsets of each of the public fields


size_t Person_size = 32; 
size_t Person_align = 8; 
size_t Person_name_offset = 0; 
size_t Person_birthDate_offset = 8;



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 40

Client/External Code

Client code (external) indirects through layout metadata


Access a field:


read the metadata for the field offset


add that offset to the base object


cast the new pointer and load the field


Store an instance on the stack:


read the metadata for instance size


emit alloca instruction, to setup as needed



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 41

Library Code

Library code (internal) eliminates all indirection


Access a field:


read the metadata for the field offset


add that offset to the base object


cast the new pointer and load the field


Store an instance on the stack:


read the metadata for instance size


emit alloca instruction, to setup as needed



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 42

LLVM dynamically-sized things

LLVM’s support for dynamically-sized things on the stack has been good for Swift 


Swift makes heavy use of this for of ABI-stable value types: 


you have local variable of some struct defined in an ABI-stable library 


so you don’t know it’s size until load time 


Dynamic allocs can handle this nicely (with minimal perf impact)


C++ desperately want all objects to have compile-time-constant size 


The notion of sizeof/alignof being runtime values just grates against the whole C++ 

model :(


sfba.social/@dgregor79/111058162167016107

https://sfba.social/@dgregor79/111058162167016107


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 43

Resilience Domains

By explicitly modeling the boundaries between software modules that evolve 
separately vs. together:  


Swift is able introduce appropriate indirections across separately-evolved 
software modules 


while optimizing away that indirection within software modules that are 
always compiled together



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 44

Resilience Domains

A resilience domain contains code that will always be compiled together.

A program can be composed of many different resilience domains.


Resilience domains control where the costs of ABI stability are paid.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 45

Resilience Domains

Optimization and Resilience Domains 

Across resilience domains => maintain stable ABI


Within a resilience domain => all implementation details are fair game 


no indirections (direct access, no computed metadata)


no guarantees made


Optimizations need to be aware of resilience domain boundaries



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 46

Resilience Domains

What if there is only 1 resilience domain? 

There are no ABI-stable boundaries


all type layouts are fixed at compile time


stable ABI is completely irrelevant


You don’t pay for library evolution when you don’t use it



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 47

Resilient Type Layout

By default, a type that is defined by a dylib has a resilient layout.


size, alignment, stride of that type aren’t statically known to the application 


it must ask the dylib for that type’s value witness table (at runtime!)


value witness table is just the “vtable" of stuff you might want to know about any type


this results in resilient types having to be "boxed" and passed around as a pointer


not quite... (details are interesting)


inside the boundaries of the dylib 


where all of its own implementation details are statically known


the type is handled as if it wasn’t resilient (no indirections & perf costs)

https://faultlore.com/blah/swift-abi/


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 48

Escape Hatches

Swift ABI resilience is the DEFAULT (for libraries).


You have to Opt-Out of Resilience, if you don't want it.



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 49

Escape Hatches

Trading future evolution for client performance:


Explicit inline code exposed into the client


enables caller optimization, generic specialization


prevents any changes to the function’s semantics


@inline public func swapped()  
{ 
}



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 50

Escape Hatches

Trading future evolution for client performance:


Fixed-layout types promise never to change layout


enables layout of types in client code


gives-up ability to add/remove/reorder fields

@fixedLayout 
public struct Pair<First, Second>  
{ 
}

Famous last words: "This type will never need to change"

-- author unknown 😵   



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 51

Swift Challenges

Large runtime component (with compiler abilities) 


Runtime type layout


Handling metadata at runtime


Witness tables & indirections


Generics<T> are particularly hard (monomorphization, reabstraction)


Every language feature is a bit harder to design (resilient)


Older Swift runtimes might not support new language features (OS targets)

faultlore.com/blah/swift-abi/
Go in depth:

https://faultlore.com/blah/swift-abi/


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 52

Rust ABI Stability

Rust dev: "Can we have stable ABI?"


Rust dev: "We have stable ABI at home."




2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 52

Rust ABI Stability

Rust dev: "Can we have stable ABI?"


Rust dev: "We have stable ABI at home."


Stable ABI at home:  #[repr(C)] 



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 53

The C ABI - Cost

Rust FFI itself is "zero cost" in that it has the same performance characteristics as 
C(++) calling C(++) code. 


🐌 Where you can run into a cost is if you have to convert some of your internal data 
structures into a C-ABI friendly representation. 


Eg. 

If you use Rust strings String/&str but your FFI layer really wants UCS-2 strings 
(platform) 

=> you'll pay the conversion cost in order to do the FFI itself



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 54

Rust ABI

extern "C" fn

Status quo: repr(C) - fake it, till you make it 😀


Using the C calling convention for function definitions and calls


Using the C data layout for a type


Definitions of C types like char, int, long, etc.


Exporting an item under a stable linking symbol


Limited to C types, mostly


No slices

#[repr(C)]

std::ffi::c_*

#[no_mangle]

u8, i64, c_int, c_char, ... 
&T, &mut T 
*const T, *mut T 
struct



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 55

Rust ABI

The Future: calling convention and data layout


Stable calling convention that supports common data types 

&str  &[u8]  etc. 

Standard data layout that supports enums (with data), etc.

enum  struct 

Stable layout guarantees of common standard library types

Option  Result  etc. 

extern "crabi" fn

#[repr(crabi)]

#[repr(crabi)] in std

crABI  
github.com/joshtriplett/rfcs/blob/text/3470-crabi.md

https://github.com/joshtriplett/rfcs/blob/crabi-v1/text/3470-crabi-v1.md


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 56

Rust ABI

#[export]

The Future: mechanism for exporting/importing, naming symbols 
and working with dynamic libraries


Exporting items under stable linking symbols, supporting crates, 
modules, methods


Use a crate as dynamic library, only importing the exported items


Cargo features for dynamically linking to Rust libraries

extern dyn crate

cargo dynamic deps



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 57

Rust ABI

The Future: trait objects/vtables and typeid


A standard data layout for dynamic trait objects (v-tables)

&dyn T  &mut dyn T  Box<dyn T> 

A way of dealing with types that depend on global state (eg. allocated objects)

Box  Vec 

Stable typeid

Any  catch_unwind 

Access to std structures like maps through dynamic std trait objects

&dyn HashMap  etc. 



2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 58

Rust ABI

The Future: "Don't stop me now!" 🎶


Turning parts of std into an opt-in dynamic library with a stable ABI (std as dylib)


Tools to help with detect/maintaining ABI compatibility and tools to debug ABI issues


Store signatures, data layouts in binaries (introspection)

ABI Cafe 🧩 ☕
faultlore.com/abi-cafe/book/


Pair Your Compilers At The ABI Café: 

faultlore.com/blah/abi-puns/

https://faultlore.com/abi-cafe/book/
https://faultlore.com/blah/abi-puns/


2025  Victor Ciura  |  @ciura_victor  -  ABI Resilience 59

The Shiny Future

If I were to guess, I would say the 🔮 future of Rust stable ABI


is not "One To Rule Them All"


but 


MANY (for better or for worse...)



@ciura_victor Victor Ciura 
Principal Engineer 

Rust Tooling @ Microsoft
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

🦀

Swift ABI Resilience?

February 2025

C++
Rust
____
____

https://twitter.com/ciura_victor

