

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop X

Abstract
 C++/Rust is not a zero-sum game. We need to learn to play nice together... for a looong time!
That applies equally to people, but also to code. Rust code everywhere is increasing at an
accelerated rate, but so does C++ (and that's on top of gazillion lines already out there). So, hybrid
codebases are quickly becoming the norm.

 Having seamless interop between the C++ and Rust components is essential for the success of
this symbiosis. There are many challenges in this process, but people found various ways to make
things "work" - from dealing with ABI compatibility and platform/toolchain guarantees, to going
down to C and FFI, to various techniques and tools for generating glue-code between the two
languages.

 Alas, general-purpose interoperability (not tied to a specific toolchain/IR) without loss of
performance has yet to be achieved. Just "making things work" is not enough in the domain space
of C++ and Rust; as such, many of the explored solutions so far by the community fail to deliver on
all the needed requirements, swinging the wide range between performant and ergonomic.

 This presentation aims to highlight all of the interop challenges, some of the explored solutions
out there, and tease out the avenues at the forefront of this pursuit.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋

C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋
glue code
C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋
glue code
coge generators

C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋
glue code
coge generators

C FFI

fat compilers

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋
glue code
coge generators

C FFI

fat compilers
linkers

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Who thinks interop is about...

2

Slide Title

🙋
glue code
coge generators

C FFI

fat compilers
linkers
ABI compat

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
When you ask about Rust interop

C ffi, autocxx, bindgen, cbindgen, diplomat, cxx, etc. 📦

https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/dtolnay/cxx

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
When you ask about Rust interop

C ffi, autocxx, bindgen, cbindgen, diplomat, cxx, etc. 📦

boilerplate

source annotations

code generators

IDLs

mapping language constructs

https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/dtolnay/cxx

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 4

Slide Title

NO, I'm not going to dazzle you
with boilerplate code
that an LLM assistant

can spit out anytime, on demand

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 5

Slide Title

Rust extreme range of operation

⚙ ☁

Higher Level Concerns

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 6

Rust @Microsoft

6

Project Mu

Pluton security processor

SymCrypt - rustls

Azure Integrated HSM

Azure Boost Agents

Open VMM / Open HCL

Hyper-V

Azure SDK for Rust

Azure Data Explorer

Drasi

MIMIR

Caliptra

Hyperlight / WASM

... 🤫

TBD:

⚙ Windows core components

☁ Microservices⚙ ☁

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 7

Oxidation

More oxidation 🦀 efforts in progress...

C++ ➡ Rust ⬅ C#

Assist developers making the transition from C, C++, C# to Rust

Investing in Rust developer tooling

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Performance targets, x-language LTO

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Performance targets, x-language LTO

Costs of maintaining a hybrid C++/Rust codebase?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 9

Slide Title

Rust ❤ C++

They need to play nice together... for a looong time!

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability
☑

 C
ho

os
e.

..
no

ne
 s

om
e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated☑

 C
ho

os
e.

..
no

ne
 s

om
e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Hybrid build systems (CMake, cargo, MSBuild, bazel, buck2...)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 11

Slide Title

Linker

⚙ Compiler

🧾
ABI

guarantees

📦 Interop
Library

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Duck-Tape Chronicles
Rust/C++ Interop

ACCU
April 2025

Episode 1 – The ABI Menace

https://twitter.com/ciura_victor

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 13

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling 
Microsoft

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 14

Disclaimer
I'm just an engineer, with some opinions on stuff...

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 15

Slide Title

Let me start
with a sad story cautionary tale

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 16

ABI - Now or Never

In Feb 2020, in Prague, the ISO C++ committee took a series of polls
on whether to break ABI, and decided not to... sort of.

 

There was no applause 😐

 
"I’m not sure we fully understood what we did  
and the consequences it could have."

-- not so anonymous C++ committee member

wg21.link/P2028

wg21.link/P1863

http://wg21.link/P2028
http://wg21.link/P1863

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 17

C++ ABI - Now or Never

cor3ntin.github.io/posts/abi/

https://cor3ntin.github.io/posts/abi/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 18

Design or Implementation Detail?

No, this is not an “ABI - Now or Never” talk 😁

Is ABI merely an artifact of implementation in native programming languages
or should it be considered part of their design?

Some programming languages avoid this commitment, while others are still
trying to figure out a path forward.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 19

Design or Implementation Detail?

ABI stability: benefits & risks

Dynamic linking

Rust/C++ interop

Designing for ABI resilience

Resilience in library evolution

Performance costs and (opt-out) strategy

How does C++ navigate on this journey?

What can we learn from Swift’s ABI resilience?

Can Rust be liberated from the ABI conundrum?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 20

What is ABI, anyway?

ABI can mean a lot of different things to different people.

Is it platform, hardware, calling conv, language, compilers, std library, your code?

At the end of the day it’s a catch-all term for "implementation details" that at least two
things need to agree on for everything to work.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

What is ABI, anyway?

ABI stability isn’t technically a property of a programming language.

It’s really a property of a system and its toolchain.

ABI is something defined by the platform.

The platform owner can just require you to use a particular compiler toolchain that
happens to implement their "stable" ABI.

If you care about dynamic linking (shared libraries).

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 22

What is ABI, anyway?

Layout of types

size & alignment (stride)

offsets & types of fields

v-table entries

closures

Calling conventions

Name mangling (symbols)

Metadata (if applicable)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)

Language interop (hybrid projects)

⚙⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 24

ABI Stability - When?

Don't shut the door on future compiler & library improvements

Stabilizing the ABI (too early)™ might miss optimization opportunities

implement a faster custom calling convention

implement optimal structure layout

improve the way a std utility works

NB. These are not impossible things!

They are just tough engineering problems

We need to invest a lot of time and brain power to solve them

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 25

ABI Stability - Evolution of Software Libraries

Developers want to evolve their software libraries without breaking ABI

add new functionality

fix bugs

improve performance

A lot of these activities can break ABI

add a field to a class

make changes affecting v-table

(re)use existing padding for a new field?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 26

ABI Stability Scorecard

Can we have stable ABI, pretty please?

Go: NO

Rust: NO

Carbon: NO

Zig: NO

C++: <always has been meme> 🤷 ... but don't tell anyone!

Swift: YES, since v5.0 (most important thing ever!)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 27

ABI Stability

Rust has never had a stable ABI

Rust was not designed with a stable ABI as a primary goal

Still an unsolved problem 10 years after v1.0

Some people refuse to acknowledge this is an important problem

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 28

ABI Stability

Zig natively supports C ABIs for extern things; which C ABI is used depends on the target

you are compiling for (e.g. CPU architecture, operating system).

This allows for near-seamless interoperation with code that was not written in Zig; the

usage of C ABIs is standard amongst programming languages.

Zig internally does not use an ABI, meaning code should explicitly conform to a C ABI

where reproducible and defined binary-level behavior is needed.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 29

ABI Stability

Go ABI specification

Go's ABI defines the layout of data in memory and the conventions for calling between

Go functions

This ABI is unstable and will change between Go versions

If you’re writing assembly code, please instead refer to Go’s assembly documentation,

which describes Go’s stable ABI, known as ABI0

Go uses a common ABI design across all architectures (instead of the platform ABI)

All functions defined in Go source follow ABIInternal

however, ABIInternal and ABI0 functions are able to call each other through

transparent ABI wrappers

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 30

ABI Stability

Carbon / non-goals 🙂

github.com/carbon-language/carbon-lang#language-goals

❝ We also have explicit non-goals for Carbon, notably including:

a stable ABI for the entire language and library

perfect backwards or forwards compatibility

https://github.com/carbon-language/carbon-lang#language-goals

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 31

Stability ∞

The greatest champion of ABI stability and dynamic linking:

C
That's plain old C, not Carbon, by the way :)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 32

The C ABI

Many software ecosystems require both long-term ABI stability  
and the ability to constantly evolve.

These systems tend to use C as the stable ABI

Evolving software components with a C ABI requires to manually and proactively
introduce extra levels of indirection, to account for potential future changes.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 33

Stability ∞

pimpl
* one more level of indirection solves every problem, right? 😁

📦

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 34

The (early) 90s are calling...

COM interfaces

change API to hide implementation changes (break ABI)

IWidgetSomething, IWidgetSomething2, IWidgetSomething3
MIDL for interop

metadata

Objective-C msg-send

~unstructured data

type erasure / everything dynamic / indirections

swizzling, isa

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 35

STD ~ ABI

🍔

Consistency

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 36

May I have some ABI?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 37

May I have some ABI?

twitter.com/TitusWinters/status/1224351257479077889?s=20

https://twitter.com/TitusWinters/status/1224351257479077889?s=20

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 38

C++ the king of mix signals and ambivalent behavior

The committee will reject any proposal
that could cause ABI breaks in existing

STL components

Implementors* will not change/improve
library components if it would cause an

ABI break for clients

C++ will not officially commit to
guaranteeing ABI stability

C++ does not have an ABI resilience
model (it's not stable)

🤷
wg21.link/P2028

wg21.link/P1863

http://wg21.link/P2028
http://wg21.link/P1863

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)

WG21 will not promise stability forever

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

The king of mix signals and ambivalent behavior

ABI discussions in Prague (Feb 2020):

WG21 is not in favor in an ABI break in C++23/26

WG21 is in favor of an ABI break in a future™ version of C++ (When?)

WG21 "will take time to consider" proposals requiring an ABI break (read as: ignore)

WG21 will not promise stability forever

WG21 wants to keep prioritizing performance over stability

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 40

The king of mix signals and ambivalent behavior

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 41

Is change even possible?

youtube.com/watch?v=8U3hl8XMm8c

👉

https://www.youtube.com/watch?v=8U3hl8XMm8c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the

sake of stability

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the

sake of stability

tweaks to string, vector, and other container layouts

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for

function calls (language changes needed => zero-overhead for x64 call conv.)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for

function calls (language changes needed => zero-overhead for x64 call conv.)

improving std::shared_ptr, eg. lock_exclusive()

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

Why do we want to break ABI

Quality of implementation fixes:

making std::regex faster (also adding UTF-8 support)

making std::unordered_map faster or swap the hash algorithm

better conformance: some implementations are intentionally not conforming for the

sake of stability

tweaks to string, vector, and other container layouts

std::span, std::string_view, std::unique_ptr need to be spilled into registers for

function calls (language changes needed => zero-overhead for x64 call conv.)

improving std::shared_ptr, eg. lock_exclusive()

improving perf of std::mutex (std::shared_mutex is faster!)

https://stackoverflow.com/questions/69990339/why-is-stdmutex-so-much-worse-than-stdshared-mutex-in-visual-c

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

Clang libc++ ABI stability

There is a path forward:

libc++ aims to preserve a stable ABI to avoid subtle bugs

 (when code built under the old ABI is linked with code built under the new ABI)

libc++ wants to make ABI-breaking improvements/fixes (user opt-in)

libc++ allows specifying an ABI version at build time:

LIBCXX_ABI_VERSION=

1 (stable/default); 2 (unstable/next); 3 (when 2 will be frozen)...

always use the most cutting-edge, most unstable ABI: LIBCXX_ABI_UNSTABLE

All or nothing! solution 😕

libcxx.llvm.org/DesignDocs/ABIVersioning.html
📖 Clang docs:

https://libcxx.llvm.org/DesignDocs/ABIVersioning.html

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 44

Design Choices

C++ / Rust / Carbon / ... Swift

Fast code Favor small* code

Heavy inlining Outlining

CPU utilization/saturation CPU power usage

Mostly* static linking
(with occasional DLL madness) Dynamic linking (shared libraries)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop X

Outlining

LLVM Outlininer
-Oz

Outlining:

Replacing repeated sequences of
instructions with calls to equivalent functions.

(smaller code => icache)

youtube.com/watch?v=yorld-WSOeU
Jessica Paquette "Reducing Code Size Using Outlining"

developer.apple.com/videos/play/wwdc2019/409/
Jessica Paquette, JF Bastien "What's New in Clang and LLVM"

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 45

Swift who?

Ahead-Of-Time (AOT) compiled, but has a large runtime library

created to replace Objective-C on Apple’s platforms (native interop with Obj-C)

has classes and inheritance

interfaces, generics, closures, enums with payloads

Automatic Reference Counting (ARC)

simple function-scoped mutable borrows (inout)

emphasis on value semantics

structs/primitives (“values”) are “mutable xor shared” & stored inline

classes are mutably shared and boxed (using ARC) -> reference semantics

collections implement value semantics by being CoW (using ARC)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 46

Swift

Language designed for Library Evolution

Swift was designed to explicitly account for a stable ABI.

Swift espouses a principle of least regret for public interfaces,
ensuring that the implementation details of a software module do not
create a binary-compatibility contract that prevents future evolution.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 47

Swift

Language designed for Library Evolution

Principles for ABI-stable library evolution:

make all promises explicit

delineate what can and cannot change in a stable ABI

provide a performance model that indirects only when necessary

let the authors of libraries & consumers be in control

youtube.com/watch?v=MgPBetJWkmc

Doug Gregor
Implementing Language Support for
ABI-Stable Software Evolution in Swift and LLVM

https://www.youtube.com/watch?v=MgPBetJWkmc

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 48

Evolving a struct

Person struct changes size when new fields are added

Offset of fields changes whenever layout changes

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 49

Using the struct

array

offset

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 50

The Library

Type Layout should be as-if we had the whole program:

Person library should layout the type without indirection

Expose metadata with layout information:

size/alignment of type

offsets of each of the public fields

size_t Person_size = 32;
size_t Person_align = 8;
size_t Person_name_offset = 0;
size_t Person_birthDate_offset = 8;

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 51

Client/External Code

Client code (external) indirects through layout metadata

Access a field:

read the metadata for the field offset

add that offset to the base object

cast the new pointer and load the field

Store an instance on the stack:

read the metadata for instance size

emit alloca instruction, to setup as needed

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 52

Library Code

Library code (internal) eliminates all indirection

Access a field:

read the metadata for the field offset

add that offset to the base object

cast the new pointer and load the field

Store an instance on the stack:

read the metadata for instance size

emit alloca instruction, to setup as needed

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 53

LLVM dynamically-sized things

LLVM’s support for dynamically-sized things on the stack has been good for Swift

Swift makes heavy use of this for of ABI-stable value types:

you have local variable of some struct defined in an ABI-stable library

so you don’t know it’s size until load time

Dynamic allocs can handle this nicely (with minimal perf impact)

C++ desperately want all objects to have compile-time-constant size

The notion of sizeof/alignof being runtime values just grates against the whole C++

model :(

sfba.social/@dgregor79/111058162167016107

https://sfba.social/@dgregor79/111058162167016107

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 54

Resilience Domains

By explicitly modeling the boundaries between software modules that evolve
separately vs. together:

Swift is able introduce appropriate indirections across separately-evolved
software modules

while optimizing away that indirection within software modules that are
always compiled together

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 55

Resilience Domains

A resilience domain contains code that will always be compiled together.

A program can be composed of many different resilience domains.

Resilience domains control where the costs of ABI stability are paid.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 56

Resilience Domains

Optimization and Resilience Domains

Across resilience domains => maintain stable ABI

Within a resilience domain => all implementation details are fair game

no indirections (direct access, no computed metadata)

no guarantees made

Optimizations need to be aware of resilience domain boundaries

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 57

Resilience Domains

What if there is only 1 resilience domain?

There are no ABI-stable boundaries

all type layouts are fixed at compile time

stable ABI is completely irrelevant

You don’t pay for library evolution when you don’t use it

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 58

Resilient Type Layout

By default, a type that is defined by a dylib has a resilient layout.

size, alignment, stride of that type aren’t statically known to the application

it must ask the dylib for that type’s value witness table (at runtime!)

value witness table is just the “vtable" of stuff you might want to know about any type

this results in resilient types having to be "boxed" and passed around as a pointer

not quite... (details are interesting)

inside the boundaries of the dylib

where all of its own implementation details are statically known

the type is handled as if it wasn’t resilient (no indirections & perf costs)

https://faultlore.com/blah/swift-abi/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 59

Escape Hatches

Swift ABI resilience is the DEFAULT (for libraries).

You have to Opt-Out of Resilience, if you don't want it.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 60

Escape Hatches

Trading future evolution for client performance:

Explicit inline code exposed into the client

enables caller optimization, generic specialization

prevents any changes to the function’s semantics

@inline public func swapped()
{
}

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 61

Escape Hatches

Trading future evolution for client performance:

Fixed-layout types promise never to change layout

enables layout of types in client code

gives-up ability to add/remove/reorder fields

@fixedLayout
public struct Pair<First, Second>
{
}

Famous last words: "This type will never need to change"

-- author unknown 😵

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 62

Swift Challenges

Large runtime component (with compiler abilities)

Runtime type layout

Handling metadata at runtime

Witness tables & indirections

Generics<T> are particularly hard (monomorphization, reabstraction)

Every language feature is a bit harder to design (resilient)

Older Swift runtimes might not support new language features (OS targets)

faultlore.com/blah/swift-abi/
Go in depth:

https://faultlore.com/blah/swift-abi/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 63

Rust ABI Stability

Rust dev: "Can we have stable ABI?"

Rust dev: "We have stable ABI at home."

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 63

Rust ABI Stability

Rust dev: "Can we have stable ABI?"

Rust dev: "We have stable ABI at home."

Stable ABI at home: #[repr(C)]

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 64

The C ABI - Cost

Rust FFI itself is "zero cost" in that it has the same performance characteristics as
C(++) calling C(++) code.

🐌 Where you can run into a cost is if you have to convert some of your internal data
structures into a C-ABI friendly representation.

Eg.

If you use Rust strings String/&str but your FFI layer really wants UCS-2 strings
(platform)

=> you'll pay the conversion cost in order to do the FFI itself

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 65

Rust ABI

extern "C" fn

Status quo: repr(C) - fake it, till you make it 😀

Using the C calling convention for function definitions and calls

Using the C data layout for a type

Definitions of C types like char, int, long, etc.

Exporting an item under a stable linking symbol

Limited to C types, mostly

No slices

#[repr(C)]

std::ffi::c_*

#[no_mangle]

u8, i64, c_int, c_char, ...
&T, &mut T
*const T, *mut T
struct

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 66

Rust ABI

The Future: calling convention and data layout

Stable calling convention that supports common data types

&str &[u8] etc.

Standard data layout that supports enums (with data), etc.

enum struct

Stable layout guarantees of common standard library types

Option Result etc.

extern "crabi" fn

#[repr(crabi)]

#[repr(crabi)] in std

crABI
github.com/joshtriplett/rfcs/blob/text/3470-crabi.md

https://github.com/joshtriplett/rfcs/blob/crabi-v1/text/3470-crabi-v1.md

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 67

Rust ABI

#[export]

The Future: mechanism for exporting/importing, naming symbols
and working with dynamic libraries

Exporting items under stable linking symbols, supporting crates,
modules, methods

Use a crate as dynamic library, only importing the exported items

Cargo features for dynamically linking to Rust libraries

extern dyn crate

cargo dynamic deps

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 68

Rust ABI

The Future: trait objects/vtables and typeid

A standard data layout for dynamic trait objects (v-tables)

&dyn T &mut dyn T Box<dyn T>

A way of dealing with types that depend on global state (eg. allocated objects)

Box Vec

Stable typeid

Any catch_unwind

Access to std structures like maps through dynamic std trait objects

&dyn HashMap etc.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 69

Rust ABI

The Future: "Don't stop me now!" 🎶

Turning parts of std into an opt-in dynamic library with a stable ABI (std as dylib)

Tools to help with detect/maintaining ABI compatibility and tools to debug ABI issues

Store signatures, data layouts in binaries (introspection)

ABI Cafe 🧩 ☕
faultlore.com/abi-cafe/book/

Pair Your Compilers At The ABI Café:

faultlore.com/blah/abi-puns/

https://faultlore.com/abi-cafe/book/
https://faultlore.com/blah/abi-puns/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 70

Slide Title

youtube.com/watch?v=MY5kYqWeV1Q

https://www.youtube.com/watch?v=MY5kYqWeV1Q

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 71

ABI: The Shiny Future

If I were to guess, I would say the 🔮 future of Rust stable ABI

is not "One To Rule Them All"

but

MANY (for better or for worse...)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 72

Active Effort

Rust Foundation 💰- interop

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 72

Active Effort

Rust Foundation 💰- interop
This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 72

Active Effort

Rust Foundation 💰- interop

This is also part of the Rust25H1 Project Goals:

Evaluate approaches for seamless interop between C++ and Rust

Tyler Mandry is the point-of-contact for project goal

Tracking issue: rust-lang/rust-project-goals#253

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

https://rust-lang.github.io/rust-project-goals/2025h1/goals.html
https://rust-lang.github.io/rust-project-goals/2025h1/seamless-rust-cpp.html
https://github.com/rust-lang/rust-project-goals/issues/253

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 72

Active Effort

Rust Foundation joined INCITS in order to participate in the C++ ISO standards process

Jon Bauman attended the February WG 21 meeting in Austria, where he tried to outline
some the Rust/C++ interop strategy, as seen from the Rust side

Rust Foundation 💰- interop

This is also part of the Rust25H1 Project Goals:

Evaluate approaches for seamless interop between C++ and Rust

Tyler Mandry is the point-of-contact for project goal

Tracking issue: rust-lang/rust-project-goals#253

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

https://rust-lang.github.io/rust-project-goals/2025h1/goals.html
https://rust-lang.github.io/rust-project-goals/2025h1/seamless-rust-cpp.html
https://github.com/rust-lang/rust-project-goals/issues/253

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 73

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 73

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Long term:

Evaluate approaches for seamless interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 73

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Meeting:

(Feb 26) We held our first lang-team design meeting on the topic

Notes: Enabling seamless interop 📝

Long term:

Evaluate approaches for seamless interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

https://hackmd.io/@rust-lang-team/rJvv36hq1e

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 74

Join the conversation

Anyone who is interested in the topic, please join the Rust Project Zulip server
and start engaging on the #t-lang/interop channel

You’ll probably also find some familiar C++ names there, too 🙂

rust-lang.zulipchat.com

https://rust-lang.zulipchat.com/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 74

Join the conversation

Anyone who is interested in the topic, please join the Rust Project Zulip server
and start engaging on the #t-lang/interop channel

You’ll probably also find some familiar C++ names there, too 🙂

rust-lang.zulipchat.com

The next meeting on the topic will be on Apr 23 - anyone interested in the topic can join:

meet.jit.si/ferris-rules

https://rust-lang.zulipchat.com/
https://meet.jit.si/ferris-rules

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 74

Join the conversation

Anyone who is interested in the topic, please join the Rust Project Zulip server
and start engaging on the #t-lang/interop channel

You’ll probably also find some familiar C++ names there, too 🙂

rust-lang.zulipchat.com

The next meeting on the topic will be on Apr 23 - anyone interested in the topic can join:

meet.jit.si/ferris-rules

📖 Niko’s recent (March 18) post on interop, from his “Rust in 2025” series:

smallcultfollowing.com/babysteps/blog/2025/03/18/lang-interop-extensibility

https://rust-lang.zulipchat.com/
https://meet.jit.si/ferris-rules
https://smallcultfollowing.com/babysteps/blog/2025/03/18/lang-interop-extensibility/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 75

Slide Title

75

Open Discussion
What does interop mean for you?

What are the interop requirements of your project?

(constraints, limitations, priorities, goals)

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Duck-Tape Chronicles
Rust/C++ Interop

ACCU
April 2025

Episode 1 – The ABI Menace
Episode 2 – Attack of the CodegenSOON

https://twitter.com/ciura_victor

