

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Carcinization

NOT crabs ➡

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who
described it as:

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who
described it as:
 "the many attempts of Nature to evolve a crab"

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋

C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋
glue code
C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋
glue code
coge generators

C FFI

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers
linkers

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 3

Slide Title
Who thinks interop is about...

3

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers
linkers
ABI compat

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 4

Slide Title

When you ask about Rust interop

C ffi, autocxx, bindgen, cbindgen, diplomat,

capigen, cxx, zngur, crubit, wit-bindgen, etc.

https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/dtolnay/cxx

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 4

Slide Title

When you ask about Rust interop

C ffi, autocxx, bindgen, cbindgen, diplomat,

capigen, cxx, zngur, crubit, wit-bindgen, etc.

glue code

source annotations

code generators

IDLs

mapping language semantics & constructs

https://github.com/google/autocxx
https://rust-lang.github.io/rust-bindgen/
https://github.com/eqrion/cbindgen
https://github.com/rust-diplomat/diplomat
https://github.com/dtolnay/cxx

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 5

Slide Title

Rust extreme range of operation

⚙ ☁

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 6

Rust @Microsoft

6

Project Mu

Pluton security processor

SymCrypt - rustls

Azure Integrated HSM

Azure Boost Agents

Open VMM / Open HCL

Hyper-V

Azure SDK for Rust

Azure Data Explorer

Drasi

MIMIR

Caliptra

Hyperlight / WASM

... 🤫
TBD:

⚙ Windows core components

🎛 Drivers

☁ Microservices (Azure, M365)

⚙ ☁

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 7

Oxidation

More oxidation 🦀 efforts in progress...

C++ ➡ Rust ⬅ C#

Assist developers making the transition from C, C++, C# to Rust

Investing in Rust developer tooling

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Costs of writing new Rust components

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Costs of writing new Rust components

Is the full pipeline of Rust tooling ready?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Costs of writing new Rust components

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Costs of writing new Rust components

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Performance targets, x-language LTO

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 8

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of porting to Rust

Costs of writing new Rust components

Is the full pipeline of Rust tooling ready?

Debugging hybrid binaries

Performance targets, x-language LTO

Costs of maintaining a hybrid C++/Rust codebase

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 9

Slide Title

Rust ❤ C++

They need to play nice together... for a looong time!

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability
☑

 C
ho

os
e.

..
no

ne
 s

om
e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Debuggable☑

 C
ho

os
e.

..
no

ne
 s

om
e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Debuggable
Hybrid build systems (CMake, cargo, MSBuild, bazel, buck...)

☑
 C

ho
os

e.
..

no
ne

 s
om

e?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 11

Slide Title

Linker

⚙ Compiler

🧾
ABI

guarantees

📦 Interop
Library

🔎 Debugger

🏗Build system

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Duck-Tape Chronicles
Rust/C++ Interop

RustWeek
May 2025

Episode 1

https://twitter.com/ciura_victor

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 13

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling 
Microsoft

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 14

Disclaimer
I'm just an engineer, with some opinions on stuff...

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 15

Slide Title

Today: A story in 3 pieces

ABI / Layout

Move Semantics

Codegen & Compilers

teaser

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 16

Slide Title

Let me start
with a sad story cautionary tale

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 17

C++ ABI - Now or Never

cor3ntin.github.io/posts/abi/

wg21.link/P2028

wg21.link/P1863

https://cor3ntin.github.io/posts/abi/
http://wg21.link/P2028
http://wg21.link/P1863

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 18

C++ the king of mix signals and ambivalent behavior

The committee will reject* any proposal
that could cause ABI breaks in existing

STL components

Implementors* will not change/improve
library components if it would cause an

ABI break for clients

C++ will not officially commit to
guaranteeing ABI stability

C++ does not have an ABI resilience
model (it's not stable)

🤷
wg21.link/P2028

wg21.link/P1863

http://wg21.link/P2028
http://wg21.link/P1863

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 19

What is ABI, anyway?

Layout of types

size & alignment (stride)

offsets & types of fields

v-table entries

closures

Calling conventions

Name mangling (symbols)

Metadata (if applicable)

ABI isn’t a property of a programming language

It’s really a property of a system and its toolchain

ABI is something defined by the platform

Eg.

Compilers determine class layout: ❌ portable

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 20

ABI Stability - When?

Don't shut the door on future compiler & library improvements

Stabilizing the ABI (too early)™ might miss optimization opportunities

implement a faster custom calling convention

implement optimal structure layout

improve the way a std utility works

make changes affecting v-table

(re)use existing padding

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 21

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)

Language interop (hybrid projects)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 22

The (early) 90s are calling...

Old-school interop

COM

MIDL for interop

metadata

ABI resilience

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 23

Design for Library Evolution

Principles for ABI-stable library evolution:

make all promises explicit

delineate what can and cannot change in a stable ABI

provide a performance model that indirects only when necessary

let the authors of libraries & consumers be in control

youtube.com/watch?v=MgPBetJWkmc

Doug Gregor
Implementing Language Support for
ABI-Stable Software Evolution in Swift and LLVM

https://www.youtube.com/watch?v=MgPBetJWkmc

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 24

Struct Layout

C++ compilers could provide a class' data members with layout metadata

=> allow representation of Rust struct fields in C++

Retrieve layout via the C++ AST and the rustc query API

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 25

Layout

Type Layout should be as-if we had the whole program:

Widget library should layout the type without indirection

Expose metadata with layout information:

size/alignment of type

offsets of each of the public fields

overlapping sub-objects

padding tricks & vtables

Attributes, annotations, or compiler synthesized
size_t Widget_size = 32;
size_t Widget_align = 8;
size_t Widget_field1_offset = 0;
size_t Widget_field2_offset = 8;

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 26

Client/External Code

Client code (external) indirects through layout metadata

Access a field:

read the metadata for the field offset

add that offset to the base object

cast the new pointer and load the field

Store an instance on the stack:

read the metadata for instance size

emit alloca instruction, to setup as needed

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 27

Library Code

Library code (internal) eliminates all indirection

Access a field:

read the metadata for the field offset

add that offset to the base object

cast the new pointer and load the field

Store an instance on the stack:

read the metadata for instance size

emit alloca instruction, to setup as needed

performance: indirects only when necessary

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 28

Dynamically-sized

Support for dynamically-sized things on the stack is key (eg. LLVM)

Compilers can use of this for of ABI-stable value types:

you have local variable of some struct defined in an ABI-stable library

so you don’t know it’s size until load time

Dynamic allocs can handle this nicely (with minimal perf impact)

C++ desperately wants all objects to have compile-time-constant size

the notion of sizeof/alignof being runtime values clashes with the C++ model

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 29

Interop Domains

By explicitly modeling the boundaries between software modules that evolve
separately vs. together:

introduce appropriate indirections across separately-evolved software
modules

while optimizing away that indirection within software modules that are
always compiled together

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop

Library App

Library

30

Interop Domains

An interop domain contains code that will always be compiled together

Domains can control where the costs of interop are paid

struct Widget

struct Client

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 31

Interop Domains

Optimization vs. Resilience

Across resilience domains => maintain stable ABI

Within a resilience domain => all implementation details are fair game

no indirections (direct access, no computed metadata)

no guarantees made

Optimizations need to be aware of resilience domain boundaries

A program can have just 1 resilience domain

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 32

Rust ABI Stability

Rust dev: "Can we have stable ABI?"

Rust dev: "We have stable ABI at home."

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 32

Rust ABI Stability

Rust dev: "Can we have stable ABI?"

Rust dev: "We have stable ABI at home."

Stable ABI at home: #[repr(C)]

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 33

Rust ABI

extern "C" fn

Status quo: repr(C) - fake it, till you make it 😀

Using the C calling convention for function definitions and calls

Using the C data layout for a type

Definitions of C types like char, int, long, etc.

Exporting an item under a stable linking symbol

Limited to C types, mostly

No slices

#[repr(C)]

std::ffi::c_*

#[no_mangle]

u8, i64, c_int, c_char, ...
&T, &mut T
*const T, *mut T
struct

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 34

Rust ABI

The Future™: calling convention and data layout

Stable calling convention that supports common data types

&str &[u8] etc.

Standard data layout that supports enums (with data), etc.

enum struct

Stable layout guarantees of common standard library types

Option Result etc.

extern "crabi" fn

#[repr(crabi)]

#[repr(crabi)] in std

crABI
github.com/joshtriplett/rfcs/blob/text/3470-crabi.md

https://github.com/joshtriplett/rfcs/blob/crabi-v1/text/3470-crabi-v1.md

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 35

Rust ABI

#[export]

The Future™: mechanism for exporting/importing, naming symbols
and working with dynamic libraries

Exporting items under stable linking symbols, supporting crates,
modules, methods

Use a crate as dynamic library, only importing the exported items

Cargo features for dynamically linking to Rust libraries

extern dyn crate

cargo dynamic deps

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 36

Rust ABI

The Future™: trait objects/vtables and typeid

A standard data layout for dynamic trait objects (v-tables)

&dyn T &mut dyn T Box<dyn T>

A way of dealing with types that depend on global state (eg. allocated objects)

Box Vec

Stable typeid

Any catch_unwind

Access to std structures like maps through dynamic std trait objects

&dyn HashMap etc.

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 37

Rust ABI

The Future™: "Don't stop me now!" 🎶

Turning parts of std into an opt-in dynamic library with a stable ABI (std as dylib)

Tools to help with detect/maintaining ABI compatibility and tools to debug ABI issues

Store signatures, data layouts in binaries (introspection)

ABI Cafe 🧩 ☕
faultlore.com/abi-cafe/book/

Pair Your Compilers At The ABI Café:

faultlore.com/blah/abi-puns/

https://faultlore.com/abi-cafe/book/
https://faultlore.com/blah/abi-puns/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 38

Slide Title

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 39

I like to move it, move it...

Object Relocation

One particularly sensitive topic about handling C++ values

is that they are all conservatively considered non-relocatable

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 40

I like to move it, move it...

Object Relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory

For example, an int32 is relocatable because moving its 4 bytes

would preserve its actual value, so the address of that value does not matter to its integrity

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 41

I like to move it, move it...

Object Relocation

C++'s assumption of non-relocatable values hurts everybody

for the benefit of a few questionable designs

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 42

I like to move it, move it...

Object Relocation

Only a minority of objects are genuinely non-relocatable:

Eg.

- objects that use internal pointers

- objects that need to update observers that store pointers to them

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 43

I like to move it, move it...

Trivial Relocatability For C++26
Proposal to safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

Optimizing containers to take advantage of this property of a type is already in widespread use
throughout the industry, but is undefined behavior as far as the language is concerned

http://wg21.link/P2786

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 44

I like to move it, move it...

❌ place a C++ object on a Rust stack since it cannot be safely memcopy-moved
(relocated)

C++26 proposal: Make C++ types trivially relocatable (annotate types)

Get standard library to be relocatable

=> allow most C++ types on the Rust stack (efficiency)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 45

I like to move it, move it...

Support for destructive moves in C++ would match the behavior of Rust drop mechanics

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 45

I like to move it, move it...

Support for destructive moves in C++ would match the behavior of Rust drop mechanics

Rust move: which is a blind memcpy

render the moved-from object inaccessible

C++ move: where a move is really like a mutating Clone operation

leave the moved-from value accessible to be destroyed at the end of the scope

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 45

I like to move it, move it...

Support for destructive moves in C++ would match the behavior of Rust drop mechanics

📦 moveit

safe in-place construction of Rust and C++ objects

mirrors Rust's drop semantics in its destructive moves

moved-from values can no longer be used afterwards

Rust move: which is a blind memcpy

render the moved-from object inaccessible

C++ move: where a move is really like a mutating Clone operation

leave the moved-from value accessible to be destroyed at the end of the scope

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 46

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?) ⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 46

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?)

High-fidelity language semantics & mapping of vocabulary types:

front-ends (C++, rustc)

toolchain independent IR

support libs?

⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 46

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?)

High-fidelity language semantics & mapping of vocabulary types:

front-ends (C++, rustc)

toolchain independent IR

support libs?

Binary-level fidelity, ABI, linking, dylib, etc.

platform integration

post-build tooling

codegen / back-end

⚙

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 47

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 47

Active Effort

This is also part of the Rust25H1 Project Goals:

Evaluate approaches for seamless interop between C++ and Rust

Tyler Mandry is the point-of-contact for project goal

Tracking issue: rust-lang/rust-project-goals#253

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

https://rust-lang.github.io/rust-project-goals/2025h1/goals.html
https://rust-lang.github.io/rust-project-goals/2025h1/seamless-rust-cpp.html
https://github.com/rust-lang/rust-project-goals/issues/253

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 47

Active Effort

Rust Foundation joined INCITS in order to participate in the C++ ISO standards process

Jon Bauman attended the February WG 21 meeting in Austria, where he outlined some the
Rust/C++ interop strategy, as seen from the Rust side

This is also part of the Rust25H1 Project Goals:

Evaluate approaches for seamless interop between C++ and Rust

Tyler Mandry is the point-of-contact for project goal

Tracking issue: rust-lang/rust-project-goals#253

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++)

https://rust-lang.github.io/rust-project-goals/2025h1/goals.html
https://rust-lang.github.io/rust-project-goals/2025h1/seamless-rust-cpp.html
https://github.com/rust-lang/rust-project-goals/issues/253

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Long term:

Evaluate approaches for seamless interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Meetings:

(Feb 26) We held our first lang-team design meeting on the topic

(Apr 23) Short-sync on interop interest in industry (attendees)

Notes: Enabling seamless interop 📝

Long term:

Evaluate approaches for seamless interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

https://hackmd.io/@rust-lang-team/rJvv36hq1e

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 49

Join the conversation

Anyone who is interested in the topic, please join the Rust Project Zulip server
and start engaging on the #t-lang/interop channel

You’ll find there some familiar Rust and C++ names 🙂

rust-lang.zulipchat.com

https://rust-lang.zulipchat.com/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 49

Join the conversation

Anyone who is interested in the topic, please join the Rust Project Zulip server
and start engaging on the #t-lang/interop channel

You’ll find there some familiar Rust and C++ names 🙂

rust-lang.zulipchat.com

The next meetings on the interop will be 🇳🇱HERE, on May 15-17 at Rust All-Hands

https://rust-lang.zulipchat.com/

2025 Victor Ciura | Duck-Tape Chronicles: Rust/C++ Interop 50

Slide Title

50

Open Discussion
What does interop mean for you?

What are the interop requirements/challenges of your project?

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Duck-Tape Chronicles
Rust/C++ Interop

Episode 1 – The ABI Menace
Episode 2 – Attack of the CodegenSOON

RustWeek
May 2025

https://twitter.com/ciura_victor

