

Carcinization

i

NOT crabs &J

L
o
t
v

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

Forly

s

NOT crabs &J =

L E ==
B
4

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

Forly

s

NOT crabs &J =

L E ==
B
4

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who described it as:

B i,

4

NOT crabs (ad “ 4

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who described it as:

"the many attempts of Nature to evolve a crab”

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

Rust code everywhere Is increasing at an accelerated rate...

Rust L C++

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust code everywhere Is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there)

Rust L C++

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust code everywhere Is increasing at an accelerated rate...
but so does C++ (that's on top of gazillion lines already out there)

Hybrid codebases are quickly becoming the norm (whether we like it or not

Rust L C++

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust code everywhere Is increasing at an accelerated rate...
but so does C++ (that's on top of gazillion lines already out there)

Hybrid codebases are quickly becoming the norm (whether we like it or not

Rust L C++

They need to play nice together... for a looong time!

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

“But, Rust/C++ interop™ @

- ;

\'lll‘ Ul:

s m}mm E

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

glue code

C FFI
unsafe
coge generators

(fat) compilers

ergonomics

link
TIRETS perf ABIl compat

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

SN . Qr Int Lib
@; Compiler % erop Hbrary

Debugger

RRRRR
HOL

Packaging | Build systems & CI
=

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

What you’re going to get out of this talk

< This presentation aims to highlight:
~ some of the major interop challenges
- existing solutions out there

~ tease out the avenues at the forefront of this pursuit ﬁ e

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

What you’re going to get out of this talk

- This presentation aims to highlight:
-~ some of the major interop challenges
~ existing solutions out there

~ tease out the avenues at the forefront of this pursuit = _&_

~ General high-fidelity interoperability has yet to be achieved &

< Just "making things work" is not enough in the domain space of C++ and Rust

-~ Many of the explored solutions so far fail to deliver on all needed requirements

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

A story In 3 parts

o Attack of the Codegen SOIYAIRE
© The ABI Menace WSS
o "Beam me up, Scotty!” %

(sorry, wrong franchise) 5TAR TREK

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust/C++ Interop:

Carcinization or Intelligent Design?

EuroRust

Paris, October 2025

Vlctor Clura
W @ciura_victor -1 N CinalEiaepiree
4 @ciura_victor@hachyderm.io QambLgMg lcim-%
W @ciuravictor.bsky.social Rust Tooling @ Microsoft

https://twitter.com/ciura_victor

About me

x

Advanced Installer Clang Power Tools Oxidizer SDK

W @ciura_victor
& @ciura_victor@hachyderm.io

Visual C++ Rust Tooling W @ciuravictor.bsky.social
Microsoft

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

Disclaimer

I'm just an engineer, with some opinions on stuff... 4 &4 &

~
L

~ -

T ——

Yeah well, that's just, like, —
your opinion, man

What's out there...

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

A Disclaimer

No LLMs were hurt
In the making of this presentation

| kI I'm not a robot)

reCAPTCHA
100%

artisanal
code

This presentation was prepared by a human agent.
No hallucinations. But errors and ¢% hot-takes are allowed.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 13

C - The Original Duck Tape

N

-~ G is the lingua franca FF| systems language
- Every API consumable from most languages

- The only ABI-stable "universal interop glue’

)
- Poor abstraction

-~ No safety

- Naked structs (public fields)
-~ Raw pointers

- Manual lifetimes

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

bindgen

Allows Rust to call into C APIs
C headers Rust FFI bindings

typedef struct Widget {
y Widget;

void action(Widget * w);

#[repr(C)]

pub struct Widget A1

}

extern "C" A
pub fn action(w: xmut Widget);

}

Source generation (build step)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

cbindgen

Allows C code to call Rust APIs
rs C headers

#lrepr(C)] typedef struct Widget {
pub struct Widget {

‘e o y Widget;
}

void action(Widget * w);

#[unsafe(no_mangle)]
pub extern "C" fn action(w: *xmut Widget) {

}

Source generation (build step)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

bindgen / cbindgen

-~ Works directly on source files (not IDL)
~ Source generation (build step)

< Types: repr(C) ABI only

~ Pass by value: for C types

o Struc {1 i ot fiald
o G++—classes

o Rustenums Slice representation
P &S%PS%HHQ is not guaranteed
J

o Lots of complicated, unsafe code on the Rust side
~ unsafe{} required to convert to/from C representation
~ Requires scaffolding to make decent C++ interfaces

u II

© &H

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Macro-based IDL Needs to be separately maintained (manually)

#cxx::bridgel
mod ffi {
struct Widget {
things: Vec<String>

}
}
#[lrepr(C)] struct Widget {
struct Widget { rust::Vec<rust::String> things;
things: Vec<String> }s

}

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

02,9,¢

~ Types: standard types (mostly), slices, IDL structs
o C++ classes

o std::unique_ptr, std::optional

o Box<T>, Option<T>

o &str, String

o std::string

o std::vector

o Vec<T>

o &[T]

< Intentionally restrictive and opinionated
~ cxx does't know the memory layout of user types
o X Pass-by-value => need to Box<T> or unique_ptr<T>

~ Relies heavily on pinning (reduced ergonomics)
- Dealing with callbacks, allocators, etc. is painful

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

zngur

struct Widget { Custom IDL (.zng)

idi u32, | type crate::Widget {
things: Vec<String>
) ' #layout(size = 32, align = 8)
| | fn new_empty(u32) —> crate::Widget;
impl Widget { fn work() —> 32;
fn new_empty(id: u32) —> Self { \
Self {

1d: 1d, % LSRR R e e R b e R e e R e R R

things: vec![], ——— l
}

#include "generated.h"
fn work() —> f32 {

void cpp_caller() {
h auto w = rust::crate::Widget::new_empty(42);

! w.work():

}

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

zngur

- Custom IDL (.zng)
- Needs to be separately maintained (manually)

© Types: standard types (mostly), slices, IDL structs

Pass-by-value: have to manually annotate types with: #[layout(size, align)]

- no need for indirection/boxing and heap allocation

- Reduced need for pinning

- Favors Rust-friendly APls and developer experience,
accepting occasional runtime cost to get there (allocations)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++

- Needs native compiler integration (Clang + rustc)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++
- Needs native compiler integration (Clang + rustc)

- Works directly on source files (no IDL needed)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++
- Needs native compiler integration (Clang + rustc)
- Works directly on source files (no IDL needed)

- Covers the whole API surface (IDL-based solutions can be targeted)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++
- Needs native compiler integration (Clang + rustc)
- Works directly on source files (no IDL needed)
- Covers the whole API surface (IDL-based solutions can be targeted)
~ C++ compiler diversity: MSVC-GEG, Clang
~ Optional IDL (TBD - on the roadmap)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

- Bold new project with the goal of high-fidelity lang interop between Rust and C++
- Needs native compiler integration (Clang + rustc)
- Works directly on source files (no IDL needed)
- Covers the whole API surface (IDL-based solutions can be targeted)
~ C++ compiler diversity: MSVC-GEG, Clang
~ Optional IDL (TBD - on the roadmap)

~ Pass by value: AllITheThings™ (that's where deep compiler integration comes in)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

crubit

C++ header (API) q

“15i4| ===p Rust API (now)

C++ header (APl) =) BNH/EAN med TS0 =) Rust API (* on the roadmap)

/A

Bring your own compiler Eliminate Clang coupling
(auto-generate criDL)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Tradeoffs...

Projects have very diverse interop needs, so no solution fits all (equally)

Toolchain agnostic : Tight compiller integration
Specific APl bindings

IDL solutions Ergonomics
ﬁ Bindings for all APls
\ersion resilience CXX Unstable ABI

ABI stability
crubit

Dyn linking zngur Compile all from source

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Language Semantics

Some C++ features not having direct Rust equivalents:

- Overloaded assignment operator
- Overloaded dereference operator
- Overloaded new and delete operators

- Function overloading
- Argument-dependent lookup
- Default function parameters

- Implicit conversions
- SFINAE

- In-place initialization
- Move constructors

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Language Semantics

Profound semantic differences between language constructs

~ Rust semantics is a subset of C++ semantics
- Generally, Rust is less expressive than C++

~ Using Rust code from C++ is easier
~ Using C++ code from Rust much harder

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Calling C++ from Rust

Level: HARD!!!

- C++ features not having direct Rust equivalents (eg. overloading)
o unsafe

o Lifetimes

- Aliasing (refs)

-~ Movable types that are non memcopy

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Calling Rust from C++

Level: | CAN DO IT

~ Rust semantics is a subset of C++ semantics

o Rust's strong type system
~ easy to grasp intended semantics of functions, types

~ Querying rustc - /! Rust ABI is not stable: these need to be refreshed on each update

- determine the exact size & alignment of every Rust type

© struct fields
~ key trait implementations:

© Drop kd C++ dtor
~ Clone [gd C++ copy ctor

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions &> (this is a real need!)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions &> (this is a real need!)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions & (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions & (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions & (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions &> (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions @ (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language
-~ No need to hinder Rust powerful type inference with overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions @ (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language
-~ No need to hinder Rust powerful type inference with overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions @ (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language
-~ No need to hinder Rust powerful type inference with overloading

- At the ABI level overloading effectively doesn't exist
- It's just differently mangled symbol nhames

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions @ (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language
-~ No need to hinder Rust powerful type inference with overloading

- At the ABI level overloading effectively doesn't exist
- It's just differently mangled symbol nhames
-~ No fundamental need for a Rust to allow function overloads in the core language

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Function Overloading

Ability for Rust to call overloaded C++ functions @ (this is a real need!)

- Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

J JF Let's resist temptation to complicate Rust for the sake of interop

(see Carbon)

-~ We can probably solve this outside the core language
-~ No need to hinder Rust powerful type inference with overloading

- At the ABI level overloading effectively doesn't exist
- It's just differently mangled symbol nhames
-~ No fundamental need for a Rust to allow function overloads in the core language
-~ Need a way to name-mangle such that separate functions map to the correct overloads

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? A

google.com/search?qg=victor+ciura+ABI

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://www.google.com/search?q=victor+ciura

C++ Tail Padding & Rust ABI

Rust also optimizes the layout, you know
7~

- bl e s B RSN e B e P e B Bl

~,\——\—{— SR

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes
© C++ does not allow this
- fields of a child class may be placed in tail padding of the base class

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes
© C++ does not allow this
- fields of a child class may be placed in tail padding of the base class

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes
© C++ does not allow this
- fields of a child class may be placed in tail padding of the base class

- A field with [[no_unigue_address]| may have its tail padding reused for a neighbor field

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes
© C++ does not allow this
- fields of a child class may be placed in tail padding of the base class

- A field with [[no_unigue_address]| may have its tail padding reused for a neighbor field

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

C++ Tail Padding & Rust ABI

o C++ is allowed to reuse tail padding of structs, but Rust does not

~ Rust treats tail padding as part of the value
- users expect to be able to memcpy() of size_of::<T>() bytes
© C++ does not allow this
- fields of a child class may be placed in tail padding of the base class

- A field with [[no_unigue_address]|] may have its tail padding reused for a neighbor field

- Prevents Rust from turning a C++ child reference into a base class reference
- doing so would allow overwriting the tail padding (and thereby the child fields)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

M -

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

Object Relocation

One particularly sensitive topic about handling C++ values
IS that they are all conservatively considered non-relocatable

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

Object Relocation

In contrast, a relocatable value would preserve its invariant,
even If its bits were moved arbitrarily in memory

For example, an 1nt32 is relocatable because moving its 4 bytes
would preserve its actual value, so the address of that value does not matter to its integrity

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

Object Relocation

C++'s assumption of non-relocatable values hurts everybody
for the benefit of a few questionable designs

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

Object Relocation

Only a minority of objects are genuinely non-relocatable:

EQ.
- Objects that use internal pointers
- Oobjects that need to update observers that store pointers to them

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

- For alot of types (eg. std container types): copying the bytes and discarding the source
- anything with no self-references, eg. std::vector, std::unique_ptr, etc.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

- For alot of types (eg. std container types): copying the bytes and discarding the source
- anything with no self-references, eg. std::vector, std::unique_ptr, etc.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

- For alot of types (eg. std container types): copying the bytes and discarding the source
- anything with no self-references, eg. std::vector, std::unique_ptr, etc.

-~ Many libraries already optimize for such types

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Trivially Relocatable

- Relocating an object to a distinct physical location is a destructive move

- create new object having original value at destination
- destroy the source object

- For alot of types (eg. std container types): copying the bytes and discarding the source
- anything with no self-references, eg. std::vector, std::unique_ptr, etc.

-~ Many libraries already optimize for such types
< Tnivial relocation standardizes this important optimization

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

| like to move It, move It...

Trivial Relocatability C++26

Safely relocate objects in memory

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

Optimizing containers to take advantage of this property of a type is already in widespread use
throughout the industry, but is undefined behavior as far as the language is concerned

wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

http://wg21.link/P2786

Trivially Relocatable

A class is trivially relocatable if: # d e f

~ It has no virtual base classes

- all of its sub-objects are trivially relocatable

~ It has no deleted destructor

o AND:
~ Its move constructor, move-assignment operator, and destructor are defaulted
o OR
o It's tagged with the trivially relocatable_if _eligible keyword

Just C++ being comical, again...

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

C++ and Rust have opposite ways of handling move:

~ Rust likes to move by default

-~ does memcpy() on the bytes of T, regardless of type

< render the moved-from object inaccessible

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

C++ and Rust have opposite ways of handling move:

~ Rust likes to move by default

-~ does memcpy() on the bytes of T, regardless of type

< render the moved-from object inaccessible

- C++ likes to copy by default

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

C++ and Rust have opposite ways of handling move:

~ Rust likes to move by default

-~ does memcpy() on the bytes of T, regardless of type

< render the moved-from object inaccessible
- C++ likes to copy by default

- C++ is by default needing move functions (ctor, =)

© eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)

~ leaves the moved-from value accessible to be destroyed at the end of the scope

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

C++ and Rust have opposite ways of handling move:

~ Rust likes to move by default

-~ does memcpy() on the bytes of T, regardless of type

< render the moved-from object inaccessible

- C++ likes to copy by default

~ C++ is by default needing move functions (ctor, =)

© eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)

~ leaves the moved-from value accessible to be destroyed at the end of the scope
< Rust Pin solves the issue with self-referential types

~ not ergonomic (pollutes the context)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

| like to move It, move It...

X Place a C++ object on a Rust stack since it cannot be safely memcopy-moved
(relocated)

C++26: Make C++ types trivially relocatable (annotate types)

Get standard library to be relocatable
=> allow most C++ types on the Rust stack (efficiency)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

restart lifetime()

A Lifetime-Management Primitive
for Trivially Relocatable Types

|| wg21.link/P3858

42

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

http://wg21.link/P3858

restart lifetime()

o acalltotrivial relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at

the target location - without invoking any constructors or destructors

A Lifetime-Management Primitive
for Trivially Relocatable Types

||| wg21.1link/P3858

42

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

http://wg21.link/P3858

restart lifetime()

o acalltotrivial relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors

o new restart lifetime() functioninthe start lifetime as() series of std functions

A Lifetime-Management Primitive
for Trivially Relocatable Types

|| wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

http://wg21.link/P3858

restart lifetime()

o acalltotrivial relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors

o new restart lifetime() functioninthe start lifetime as() series of std functions

< It allows us to separate the “memory copying” aspect of relocation from restarting the object’s
lifetime at the new memory address

A Lifetime-Management Primitive
for Trivially Relocatable Types

—| | wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

http://wg21.link/P3858

restart lifetime()

o acalltotrivial relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors

o new restart lifetime() functioninthe start lifetime as() series of std functions

< It allows us to separate the “memory copying” aspect of relocation from restarting the object’s
lifetime at the new memory address

template<class T>
requires /* ... */
T* trivially_relocate(T* first, T* last, T* result)
{
std: :memcpy(result,
first,
(last-first)*sizeof(T));
for(size_t 1 = 0; 1 < (last-first); ++1)
std: :restart_lifetime(result[1]);

A Lifetime-Management Primitive
for Trivially Relocatable Types

} —| | wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

http://wg21.link/P3858

L et's talk compllers!

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Compilers & Interop

Many of the tricks here require deep compiler involvement

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Compilers & Interop

Many of the tricks here require deep compiler involvement

High-fidelity language semantics & mapping of std vocabulary types
~ front-ends (C++, rustc)
~ toolchain independent IR

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Compilers & Interop

Many of the tricks here require deep compiler involvement

High-fidelity language semantics & mapping of std vocabulary types
~ front-ends (C++, rustc)
~ toolchain independent IR

Binary-level fidelity, ABI, codegen, linking, dylib, etc.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Compilers & Interop

C++26 Reflection will be a game changer for lang interop!

!
The new DuckTape .k

X&J

Compilers & Interop

C++26 Reflection will be a game changer for lang interop!

e | Use C++ type from Go (golang) m
B Use C++ type from Python { &

package mailn
| import widgetlib - import "fmt" Use C++ type from C

int main() {
widget handle* w = widget_ create(10);

§=] t(10 7
prin 5 : Hewiidger oRe if (lw) { fprlntf(stderr, can't create wid

UBE Use C++ type from JavaScript/TypeScripti Js 5 unc main() {

] js’ ol

prin] import createModule from './widget.]s 2§:?;r?ntlz?ifidd(5)) orintf("+5 = %d\n", widget_ agg(w’ 3;;’

L const Module = await createModule(); fmt.Println(w.Add(7)) PP}”ti(";? i igt:", :igzzi 2ho£¥2w' "ﬂl")),
const w = new Module.Widget(10); fmt.Println(w.Shout("h pr;ntt(de;t;oy(w) > >
console.log(w.add(5)); 15 «-:y.f ey | :;tﬁrn—6° 5
console.log(w.add(7)); 22 AP >

console.log(w.shout("hi")); // hi!

w.delete(); (2;

-)
Ao
Q‘v/

Herb Sutter: "Reflection: C++’s Decade-Defining Rocket Engine" (CppCon 2025)
youtube.com/watch?v=7z9NNrRDHQU

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

46

https://www.youtube.com/watch?v=7z9NNrRDHQU

Who's driving this thing?

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

Short term:

- Contribute engineering time to some of the key interop crates
- @Gain perspective on what sort of challenges need solutions external to those crates

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

Short term:
- Contribute engineering time to some of the key interop crates
- @Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

- Evaluate approaches for "seamless” interop between C++ and Rust
-~ Document the problem space of current interop challenges (identify the gaps)
© Facilitate top-down discussions about priorities and tradeoffs

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

Short term:
- Contribute engineering time to some of the key interop crates
- @Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

- Evaluate approaches for "seamless” interop between C++ and Rust
-~ Document the problem space of current interop challenges (identify the gaps)
© Facilitate top-down discussions about priorities and tradeoffs

Rust Foundation joined INCITS in order to participate in the C++ ISO standards process
(Jon Bauman, David Sankel, et.al.)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server
o rust-lang.zulipchat.com
o #t-lang/interop channel

|

F3 O e -

You’ll find there some familiar Rust and C++ names &

bbbbbbbb

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://rust-lang.zulipchat.com/

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server
o rust-lang.zulipchat.com
o #t-lang/interop channel

T
73 F u -

You’ll find there some familiar Rust and C++ names &

=, Meetings:

fis S e

bbbbbbbb

< Apr 23 Short-sync on interop interest in industry
© May 15-17 Interop study group @ Rust-All-Hands - Notes

© Sep 2 Interop study group @ RustConf - Notes =

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

https://rust-lang.zulipchat.com/
https://hackmd.io/@rust-lang-team/rJvv36hq1e
https://hackmd.io/SttrF3gwTrqJBVIhVtLvbw
https://hackmd.io/Ngoc6POlT4CywmocKh4MzQ

Must watch (if

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

‘Rust/C++ Integration

David Sankel

outube.com/watch?v=k sp5wvoEVM

https://www.youtube.com/watch?v=k_sp5wvoEVM

.,‘_'r - 2 4" = o
£ r . .
c ' f

2025 | Seattle + Online

¥ -

S

Lo |.\

Fine-grained
Rust / C++ mterop

Taylor Cramer and Tyler Mandry

hosted by: PN

" Rust
Foundation

The original annual Rust programming language conference.

youtube.com/watch?v=Z5M4NIWoMJQ

https://www.youtube.com/watch?v=Z5M4NIWoMJQ

Open Discussion

What does Rust/C++ interop mean for you?

What are the interop requirements/challenges of your project”?

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design?

Rust/C++ Interop:

Carcinization or Intelligent Design?

EuroRust

Paris, October 2025

Vlctor Clura
W @ciura_victor -1 N CinalEiaepiree
4 @ciura_victor@hachyderm.io QambLgMg lcim-%
W @ciuravictor.bsky.social Rust Tooling @ Microsoft

https://twitter.com/ciura_victor

