

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

NOT crabs ➡

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who described it as:

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans
evolve a crab-like body plan.

The term was introduced into evolutionary biology by L.A. Borradaile, who described it as:

"the many attempts of Nature to evolve a crab"

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 3

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 3

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 3

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there)

Hybrid codebases are quickly becoming the norm (whether we like it or not)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 3

Slide Title

Rust ↔ C++

They need to play nice together... for a looong time!

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there)

Hybrid codebases are quickly becoming the norm (whether we like it or not)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 4

Slide Title

〝But, Rust/C++ interop〞🥹

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 5

Slide Title

5

Slide Title

🙋

glue code

coge generators

C FFI

(fat) compilers

linkers ABI compat

unsafe

ergonomics

perf

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title

Linker

⚙Compiler

🧾ABI guarantees

📦

Interop Library

🔎Debugger

🏗Build systems & CIPackaging

🔩

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 7

Slide Title
What you’re going to get out of this talk

This presentation aims to highlight:

some of the major interop challenges

existing solutions out there

tease out the avenues at the forefront of this pursuit 🏗

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 7

Slide Title
What you’re going to get out of this talk

This presentation aims to highlight:

some of the major interop challenges

existing solutions out there

tease out the avenues at the forefront of this pursuit

General high-fidelity interoperability has yet to be achieved 🌶

Just "making things work" is not enough in the domain space of C++ and Rust

Many of the explored solutions so far fail to deliver on all needed requirements

🏗

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 8

Slide Title

A story in 3 parts

 Attack of the Codegen

 The ABI Menace

 "Beam me up, Scotty!"

(sorry, wrong franchise)

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Rust/C++ Interop:
Carcinization or Intelligent Design?

EuroRust
Paris, October 2025

https://twitter.com/ciura_victor

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 10

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling 
Microsoft

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 11

Disclaimer
I'm just an engineer, with some opinions on stuff... 🌶 🌶 🌶

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 12

Slide Title

What's out there...

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 13

⚠ Disclaimer

No LLMs were hurt
in the making of this presentation

This presentation was prepared by a human agent.

No hallucinations. But errors and 🔥 hot-takes are allowed.

100%
artisanal

code

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 14

C - The Original Duck Tape

🙂

C is the lingua franca FFI systems language

Every APl consumable from most languages

The only ABl-stable "universal interop glue"

☹

Poor abstraction

No safety

Naked structs (public fields)

Raw pointers

Manual lifetimes

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 15

bindgen

typedef struct Widget {
...
} Widget;

void action(Widget * w);

#[repr(C)]
pub struct Widget {
...
}

extern "C" {
 pub fn action(w: *mut Widget);
}

Allows Rust to call into C APIs

C headers ➡ Rust FFI bindings

➡

Source generation (build step)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 16

cbindgen

typedef struct Widget {
...
} Widget;

void action(Widget * w);

#[repr(C)]
pub struct Widget {
...
}

#[unsafe(no_mangle)]
pub extern "C" fn action(w: *mut Widget) {
...
}

➡

Allows C code to call Rust APIs

.rs ➡ C headers

Source generation (build step)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 17

bindgen / cbindgen

Works directly on source files (not IDL)

Source generation (build step)

Types: repr(C) ABI only

Pass by value: for C types

Structs with private fields

C++ classes

std::unique_ptr, std::optional

Box<T>, Option<T>

Rust enums

&str, String

std::string

&[T]

Lots of complicated, unsafe code on the Rust side

unsafe{} required to convert to/from C representation

Requires scaffolding to make decent C++ interfaces

Slice representation
is not guaranteed

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 18

cxx

#[cxx::bridge]
mod ffi {
 struct Widget {
 things: Vec<String>
 }
}

Macro-based IDL

#[repr(C)]
struct Widget {
 things: Vec<String>
}

struct Widget {
 rust::Vec<rust::String> things;
};

Needs to be separately maintained (manually)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 19

cxx

Types: standard types (mostly), slices, IDL structs

C++ classes

std::unique_ptr, std::optional

Box<T>, Option<T>

&str, String

std::string

std::vector

Vec<T>

&[T]

Intentionally restrictive and opinionated

cxx does't know the memory layout of user types

❌ Pass-by-value => need to Box<T> or unique_ptr<T>

Relies heavily on pinning (reduced ergonomics)

Dealing with callbacks, allocators, etc. is painful

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 20

zngur
Custom IDL (.zng)

type crate::Widget {
 #layout(size = 32, align = 8)

 fn new_empty(u32) -> crate::Widget;
 fn work() -> f32;
}

struct Widget {
 id: u32,
 things: Vec<String>
}

impl Widget {
 fn new_empty(id: u32) -> Self {
 Self {
 id: id,
 things: vec![],
 }

 fn work() -> f32 {
 ...
 }
}

#include "generated.h"

void cpp_caller() {
 auto w = rust::crate::Widget::new_empty(42);
 w.work();
}

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 21

zngur

Custom IDL (.zng)

Needs to be separately maintained (manually)

Types: standard types (mostly), slices, IDL structs

✅ Pass-by-value: have to manually annotate types with: #[layout(size, align)]

 - no need for indirection/boxing and heap allocation

Reduced need for pinning

Favors Rust‑friendly APIs and developer experience,  
accepting occasional runtime cost to get there (allocations)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc)

Works directly on source files (no IDL needed)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc)

Works directly on source files (no IDL needed)

Covers the whole API surface (IDL-based solutions can be targeted)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc)

Works directly on source files (no IDL needed)

Covers the whole API surface (IDL-based solutions can be targeted)

C++ compiler diversity: MSVC, GCC, Clang

Optional IDL (TBD - on the roadmap)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 22

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc)

Works directly on source files (no IDL needed)

Covers the whole API surface (IDL-based solutions can be targeted)

C++ compiler diversity: MSVC, GCC, Clang

Optional IDL (TBD - on the roadmap)

Pass by value: AllTheThings™ (that's where deep compiler integration comes in)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 23

crubit

crubitC++ header (API) Rust API

crubitC++ header (API) Rust APIIDL* (* on the roadmap)

Eliminate Clang couplingBring your own compiler

(auto-generate crIDL)

(now)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 24

Tradeoffs...

Toolchain agnostic

Specific API bindings

ABI stability

Version resilience

Dyn linking

Tight compiler integration

Ergonomics

Bindings for all APIs

Unstable ABI

Compile all from source
crubit

IDL solutions

Projects have very diverse interop needs, so no solution fits all (equally)

cxx
zngur

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 25

Language Semantics

Some C++ features not having direct Rust equivalents:

Overloaded assignment operator
Overloaded dereference operator
Overloaded new and delete operators
Function overloading
Argument-dependent lookup
Default function parameters
Implicit conversions
SFINAE
In-place initialization
Move constructors

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 26

Language Semantics

Profound semantic differences between language constructs

Rust semantics is a subset of C++ semantics

Generally, Rust is less expressive than C++

=>

Using Rust code from C++ is easier

Using C++ code from Rust much harder

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 27

Calling C++ from Rust

C++ features not having direct Rust equivalents (eg. overloading)

unsafe

Lifetimes

Aliasing (refs)

Movable types that are non memcopy

...

Level: HARD!!!

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 28

Calling Rust from C++

Rust semantics is a subset of C++ semantics

Rust's strong type system

easy to grasp intended semantics of functions, types

Querying rustc - ⚠ Rust ABI is not stable: these need to be refreshed on each update

determine the exact size & alignment of every Rust type

struct fields

key trait implementations:

Drop ➡ C++ dtor

Clone ➡ C++ copy ctor

Level: I CAN DO IT

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names
No fundamental need for a Rust to allow function overloads in the core language

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 29

Function Overloading

Ability for Rust to call overloaded C++ functions 😥 (this is a real need!)

Some folks say we really need to have a way to semantically identify a C++ overload
from Rust - at language level

 🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names
No fundamental need for a Rust to allow function overloads in the core language
Need a way to name-mangle such that separate functions map to the correct overloads

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 30

Slide Title

The ABI Menace
google.com/search?q=victor+ciura+ABI

teaser

https://www.google.com/search?q=victor+ciura

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 31

C++ Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field

Prevents Rust from turning a C++ child reference into a base class reference  
- doing so would allow overwriting the tail padding (and thereby the child fields)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 32

Slide Title

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 33

I like to move it, move it...

Object Relocation

One particularly sensitive topic about handling C++ values

is that they are all conservatively considered non-relocatable

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 34

I like to move it, move it...

Object Relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory

For example, an int32 is relocatable because moving its 4 bytes

would preserve its actual value, so the address of that value does not matter to its integrity

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 35

I like to move it, move it...

Object Relocation

C++'s assumption of non-relocatable values hurts everybody

for the benefit of a few questionable designs

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 36

I like to move it, move it...

Object Relocation

Only a minority of objects are genuinely non-relocatable:

Eg.

- objects that use internal pointers

- objects that need to update observers that store pointers to them

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

Many libraries already optimize for such types

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 37

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

Many libraries already optimize for such types
Trivial relocation standardizes this important optimization

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 38

I like to move it, move it...

Trivial Relocatability C++26
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an
object from one location to another by copying its bits — an operation known as trivial relocation

Some types even support bitwise swapping, which requires replacing the objects passed to the
swap function, without violating any object invariants

Optimizing containers to take advantage of this property of a type is already in widespread use
throughout the industry, but is undefined behavior as far as the language is concerned

http://wg21.link/P2786

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 39

Trivially Relocatable

A class is trivially relocatable if:

it has no virtual base classes

all of its sub-objects are trivially relocatable

it has no deleted destructor

AND:

its move constructor, move-assignment operator, and destructor are defaulted

OR

it's tagged with the trivially_relocatable_if_eligible keyword

😅

#def

Just C++ being comical, again...

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 40

I like to move it, move it...

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 40

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type

render the moved-from object inaccessible

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 40

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type

render the moved-from object inaccessible

C++ likes to copy by default

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 40

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type

render the moved-from object inaccessible

C++ likes to copy by default

C++ is by default needing move functions (ctor, =)

eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)

leaves the moved-from value accessible to be destroyed at the end of the scope

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 40

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type

render the moved-from object inaccessible

C++ likes to copy by default

C++ is by default needing move functions (ctor, =)

eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)

leaves the moved-from value accessible to be destroyed at the end of the scope

Rust Pin solves the issue with self-referential types

not ergonomic (pollutes the context)

C++ and Rust have opposite ways of handling move:

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 41

I like to move it, move it...

❌ Place a C++ object on a Rust stack since it cannot be safely memcopy-moved
(relocated)

C++26: Make C++ types trivially relocatable (annotate types)

Get standard library to be relocatable

=> allow most C++ types on the Rust stack (efficiency)

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

restart_lifetime()

wg21.link/P3858

A Lifetime-Management Primitive

for Trivially Relocatable Types

📖

http://wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

restart_lifetime()

wg21.link/P3858

A Lifetime-Management Primitive

for Trivially Relocatable Types

📖

a call to trivial_relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors

http://wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

restart_lifetime()

wg21.link/P3858

A Lifetime-Management Primitive

for Trivially Relocatable Types

📖

a call to trivial_relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors
new restart_lifetime() function in the start_lifetime_as() series of std functions

http://wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

restart_lifetime()

wg21.link/P3858

A Lifetime-Management Primitive

for Trivially Relocatable Types

📖

a call to trivial_relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors
new restart_lifetime() function in the start_lifetime_as() series of std functions
it allows us to separate the “memory copying” aspect of relocation from restarting the object’s
lifetime at the new memory address

http://wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 42

restart_lifetime()

wg21.link/P3858

A Lifetime-Management Primitive

for Trivially Relocatable Types

📖

a call to trivial_relocate() performs a logically atomic operation whereby an object’s
representation is copied, its lifetime is ended at the original location, and its lifetime is restarted at
the target location - without invoking any constructors or destructors
new restart_lifetime() function in the start_lifetime_as() series of std functions
it allows us to separate the “memory copying” aspect of relocation from restarting the object’s
lifetime at the new memory address

http://wg21.link/P3858

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 43

Slide Title

Let's talk compilers!

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 44

Compilers & Interop

Many of the tricks here require deep compiler involvement

⚙

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 44

Compilers & Interop

Many of the tricks here require deep compiler involvement

High-fidelity language semantics & mapping of std vocabulary types

front-ends (C++, rustc)

toolchain independent IR

⚙

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 44

Compilers & Interop

Many of the tricks here require deep compiler involvement

High-fidelity language semantics & mapping of std vocabulary types

front-ends (C++, rustc)

toolchain independent IR

Binary-level fidelity, ABI, codegen, linking, dylib, etc.

⚙

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 45

Compilers & Interop

C++26 Reflection will be a game changer for lang interop!

The new DuckTape

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 46

Compilers & Interop

Herb Sutter: "Reflection: C++’s Decade-Defining Rocket Engine" (CppCon 2025)
youtube.com/watch?v=7z9NNrRDHQU

C++26 Reflection will be a game changer for lang interop!

https://www.youtube.com/watch?v=7z9NNrRDHQU

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 47

Slide Title

Who's driving this thing?

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 48

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

Evaluate approaches for "seamless" interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 48

Active Effort

Short term:

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

Evaluate approaches for "seamless" interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

Rust Foundation joined INCITS in order to participate in the C++ ISO standards process

(Jon Bauman, David Sankel, et.al.)

This year, there have been effervescent talks in the Rust Project & community about this
topic (in the broader interop context, not just C++) -- eg. Rust25H1 Project Goals

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 49

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server

rust-lang.zulipchat.com

#t-lang/interop channel

You’ll find there some familiar Rust and C++ names 🙂

https://rust-lang.zulipchat.com/

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 49

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server

rust-lang.zulipchat.com

#t-lang/interop channel

You’ll find there some familiar Rust and C++ names 🙂

🗓 Meetings:

Feb 26 First lang-team design meeting on the topic - Notes 📝

Apr 23 Short-sync on interop interest in industry

May 15-17 Interop study group @ Rust-All-Hands - Notes 📝

Sep 2 Interop study group @ RustConf - Notes 📝

https://rust-lang.zulipchat.com/
https://hackmd.io/@rust-lang-team/rJvv36hq1e
https://hackmd.io/SttrF3gwTrqJBVIhVtLvbw
https://hackmd.io/Ngoc6POlT4CywmocKh4MzQ

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 50

Slide Title

Must watch 🍿

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 51

Slide Title

youtube.com/watch?v=k_sp5wvoEVM

https://www.youtube.com/watch?v=k_sp5wvoEVM

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 52

We are crubit

youtube.com/watch?v=Z5M4NIWoMJQ

https://www.youtube.com/watch?v=Z5M4NIWoMJQ

2025 Victor Ciura | Rust/C++ Interop: Carcinization or Intelligent Design? 53

Slide Title

53

Open Discussion
What does Rust/C++ interop mean for you?

What are the interop requirements/challenges of your project?

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Rust/C++ Interop:
Carcinization or Intelligent Design?

EuroRust
Paris, October 2025

https://twitter.com/ciura_victor

