


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

NOT crabs ➡



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans 
evolve a crab-like body plan. 

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans 
evolve a crab-like body plan. 

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans 
evolve a crab-like body plan. 

The term was introduced into evolutionary biology by L.A. Borradaile, who 
described it as: 

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 2

Slide Title
Carcinization

Carcinisation is a form of convergent evolution in which non-crab crustaceans 
evolve a crab-like body plan. 

The term was introduced into evolutionary biology by L.A. Borradaile, who 
described it as: 
         "the many attempts of Nature to evolve a crab"

NOT crabs ➡

https://en.wikipedia.org/wiki/Convergent_evolution
https://en.wikipedia.org/wiki/Crab
https://en.wikipedia.org/wiki/Body_plan
https://en.wikipedia.org/wiki/Evolutionary_biology


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 3

Slide Title

Me: Rust/C++ interop 🥹✨



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 4

Slide Title Why do you care? 
Why are you here? 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 4

Slide Title Why do you care? 
Why are you here? 

When Rust folks are looking into C/C++ interop, it’s natural… 

they NEED it in order to call into existing libs they don’t yet have.



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 4

Slide Title Why do you care? 
Why are you here? 

When Rust folks are looking into C/C++ interop, it’s natural… 

they NEED it in order to call into existing libs they don’t yet have.

But when C++ folks look into Rust interop, it’s more than curiosity... 

you know some degree of desperation has occurred 🔥



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 5

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 5

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there) 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 5

Slide Title

Rust ↔ C++

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there) 

Hybrid codebases are quickly becoming the norm (whether we like it or not)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 5

Slide Title

Rust ↔ C++

They need to play nice together... for a looong time! 

Rust code everywhere is increasing at an accelerated rate...

but so does C++ (that's on top of gazillion lines already out there) 

Hybrid codebases are quickly becoming the norm (whether we like it or not)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋

C FFI



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋
glue code
C FFI



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋
glue code
coge generators

C FFI



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers
linkers



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 6

Slide Title
Who thinks interop is about...

6

Slide Title

🙋
glue code
coge generators

C FFI

(fat) compilers
linkers
ABI compat



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 7

Slide Title
What you’re going to get out of this talk

This presentation aims to highlight:


some of the major interop challenges


existing solutions out there


tease out the avenues at the forefront of this pursuit 🏗



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 7

Slide Title
What you’re going to get out of this talk

This presentation aims to highlight:


some of the major interop challenges


existing solutions out there


tease out the avenues at the forefront of this pursuit

General high-fidelity interoperability has yet to be achieved 🌶


Just "making things work" is not enough in the domain space of C++ and Rust


Many of the explored solutions so far fail to deliver on all needed requirements

🏗



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 8

Slide Title

A vignette in 3 parts

 Attach of the Codegen

 The ABI Menace

 "Beam me up, Scotty!" 


(sorry, wrong franchise)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 9

Slide Title

Rust extreme range of operation

⚙ ☁



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability
☑

 C
ho

os
e.

.. 
no

ne
 s

om
e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Debuggable☑

 C
ho

os
e.

.. 
no

ne
 s

om
e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 10

Rust / C++ interoperability

No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Debuggable
Hybrid build systems (CMake, cargo, MSBuild, bazel, buck...) 

☑
 C

ho
os

e.
.. 

no
ne

 s
om

e?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 11

Slide Title

Linker

⚙Compiler

🧾ABI guarantees

📦

Interop Library

🔎Debugger

🏗Build systems & CIPackaging

🔩



@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura 
Principal Engineer 

Rambling Idiot 
Rust Tooling @ Microsoft

________

Rust/C++ Interop: 
Carcinization or Intelligent Design?

NDC TechTown
September 2025

https://twitter.com/ciura_victor


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 13

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling 
Microsoft

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 14

Disclaimer
I'm just an engineer, with some opinions on stuff...



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 15

Slide Title

What's out there...



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 16

⚠ Disclaimer

No LLMs were hurt  
in the making of this presentation

This presentation was prepared by a human agent.

No hallucinations. But errors and 🔥 hot-takes are allowed.

100%  
artisanal 

code



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 17

C - The Original Duck Tape

🙂

C is the lingua franca FFI systems language


Every APl consumable from most languages 


The only ABl-stable "universal interop glue"


☹

Poor abstraction

No safety

Naked structs (public fields)

Raw pointers

Manual lifetimes



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 18

bindgen

typedef struct Widget { 
... 
} Widget; 

void action(Widget * w);

#[repr(C)] 
pub struct Widget { 
... 
} 

extern "C" { 
  pub fn action(w: *mut Widget); 
}

Allows Rust to call into C APIs

C headers  ➡  Rust FFI bindings

➡

Source generation (build step)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 19

cbindgen

typedef struct Widget { 
... 
} Widget; 

void action(Widget * w);

#[repr(C)] 
pub struct Widget { 
... 
} 

#[unsafe(no_mangle)] 
pub extern "C" fn action(w: *mut Widget) { 
... 
}

➡

Allows C code to call Rust APIs

.rs  ➡  C headers

Source generation (build step)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 20

bindgen / cbindgen

Works directly on source files (not IDL)

Source generation (build step)

Types: repr(C) ABI only

Pass by value: for C types

Structs with private fields

C++ classes

std::unique_ptr, std::optional

Box<T>, Option<T>

Rust enums

&str, String

std::string

&[T]

Lots of complicated, unsafe code on the Rust side

unsafe{} required to convert to/from C representation


Requires scaffolding to make decent C++ interfaces

Slice representation  
is not guaranteed 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 21

cxx

#[cxx::bridge] 
mod ffi { 
  struct Widget { 
    things: Vec<String> 
  } 
}

Macro-based IDL

#[repr(C)] 
struct Widget { 
  things: Vec<String> 
}

struct Widget { 
  rust::Vec<rust::String> things; 
};

Needs to be separately maintained (manually)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 22

cxx

Types: standard types (mostly), slices, IDL structs

C++ classes

std::unique_ptr, std::optional

Box<T>, Option<T>

&str, String

std::string

std::vector

Vec<T>

&[T]

Intentionally restrictive and opinionated 

cxx does't know the memory layout of user types

❌ Pass-by-value => need to Box<T> or unique_ptr<T>

Relies heavily on pinning (reduced ergonomics)

Dealing with callbacks, allocators, etc. is painful



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 23

zngur
Custom IDL (.zng)

type crate::Widget { 
  #layout(size = 32, align = 8) 

  fn new_empty(u32) -> crate::Widget; 
  fn work() -> f32; 
}

struct Widget { 
  id: u32, 
  things: Vec<String> 
} 

impl Widget { 
  fn new_empty(id: u32) -> Self { 
    Self { 
      id: id, 
      things: vec![], 
  } 

  fn work() -> f32 { 
   ... 
  } 
}

#include "generated.h" 

void cpp_caller() { 
  auto w = rust::crate::Widget::new_empty(42); 
  w.work(); 
}



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 24

zngur

Custom IDL (.zng)

Needs to be separately maintained (manually)


Types: standard types (mostly), slices, IDL structs


✅ Pass-by-value: have to manually annotate types with: #[layout(size, align)]

     - no need for indirection/boxing and heap allocation 


Reduced need for pinning


Favors Rust‑friendly APIs and developer experience,  
accepting occasional runtime cost to get there




2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc) 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc) 

Works directly on source files (no IDL needed) 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc) 

Works directly on source files (no IDL needed) 

Covers the whole API surface (IDL-based solutions can be targeted)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc) 

Works directly on source files (no IDL needed) 

Covers the whole API surface (IDL-based solutions can be targeted)

C++ compiler diversity: MSVC, GCC, Clang


Optional IDL (TBD - on the roadmap)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 25

crubit

Bold new project with the goal of high-fidelity lang interop between Rust and C++

Needs native compiler integration (Clang + rustc) 

Works directly on source files (no IDL needed) 

Covers the whole API surface (IDL-based solutions can be targeted)

C++ compiler diversity: MSVC, GCC, Clang


Optional IDL (TBD - on the roadmap)

Pass by value: AllTheThings™ (that's where deep compiler integration comes in)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 26

crubit

crubitC++ header (API) Rust API

crubitC++ header (API) Rust APIIDL* (* on the roadmap)

Eliminate Clang couplingBring your own compiler

(auto-generate crIDL)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 27

Tradeoffs...

Toolchain agnostic

Specific API bindings


ABI stability

Version resilience


Dyn linking

Tight compiler integration

Ergonomics


Bindings for all APIs

Unstable ABI


Compile all from source
crubit

IDL solutions

Projects have very diverse interop needs, so no solution fits all (equally)

cxx 
zngur



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 28

Language Semantics

Some C++ features not having direct Rust equivalents: 

Overloaded assignment operator
Overloaded dereference operator
Overloaded new and delete operators
Function overloading
Argument-dependent lookup 
Default function parameters
Implicit conversions
SFINAE
In-place initialization
Move constructors



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 29

Language Semantics

Profound semantic differences between language constructs

Rust semantics is a subset of C++ semantics

Generally, Rust is less expressive than C++


=>


Using Rust code from C++ is easier

Using C++ code from Rust much harder



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 30

Calling C++ from Rust

C++ features not having direct Rust equivalents (eg. overloading)


unsafe


Lifetimes


Aliasing (refs)


Movable types that are non memcopy 


...

Level: HARD!!!



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 31

Calling Rust from C++

Rust semantics is a subset of C++ semantics

Rust's strong type system 


easy to grasp intended semantics of functions, types


Querying rustc - ⚠ Rust ABI is not stable: these need to be refreshed on each update

determine the exact size & alignment of every Rust type

struct fields

key trait implementations: 


Drop ➡ C++ dtor

Clone ➡ C++ copy ctor

Level: I CAN DO IT



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names
No fundamental need for a Rust to allow function overloads in the core language



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 32

Function Overloading

Ability for Rust to call overloaded C++ functions 😥  (this is a real need!) 

Some folks say we really need to have a way to semantically identify a C++ overload 
from Rust - at language level 

       🌶 🌶 Let's resist temptation to complicate Rust for the sake of interop
(see Carbon)

We can probably solve this outside the core language
No need to hinder Rust powerful type inference with overloading

At the ABI level overloading effectively doesn't exist  
- it's just differently mangled symbol names
No fundamental need for a Rust to allow function overloads in the core language
Need a way to name-mangle such that separate functions map to the correct overloads



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 33

Slide Title

The ABI Menace



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 34

What is ABI, anyway?

Layout of types 

size & alignment (stride)

offsets & types of fields

v-table entries

closures


Calling conventions

Name mangling (symbols)

Metadata (if applicable)

ABI isn’t a property of a programming language


It’s really a property of a system and its toolchain


ABI is something defined by the platform


Eg.

Compilers determine class layout: ❌ portable



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 35

ABI Stability - When?

Don't shut the door on future compiler & library improvements


Stabilizing the ABI (too early)™ might miss optimization opportunities: 


implement a faster custom calling convention


implement optimal structure layout


improve the way a std utility works


make changes affecting v-table


(re)use existing padding



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 36

ABI Stability - Why?

You don’t have to share the source code of your library

You can use the most recent compiler for your library

Use libraries compiled with a different compiler version

You don’t have to recompile everything (full project visibility)

Binaries can be shipped and updated independently (patches)

Multiple programs can share the same library (incl. std lib)

Plugins/extensions (dynamically loaded)

Language interop (hybrid projects)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 37

The (early) 90s are calling...

Old-school interop 😅: COM, CORBA, XPCOM, ...


COM

MIDL for interop

metadata

ABI resilience

🔌 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 38

Design for Library Evolution

Principles for ABI-resilient library evolution:


make all promises explicit


delineate what can and cannot change in a stable ABI


provide a performance model that indirects only when necessary


let the authors of libraries & consumers be in control

youtube.com/watch?v=MgPBetJWkmc

Doug Gregor 
Implementing Language Support for
ABI-Stable Software Evolution in Swift and LLVM

https://www.youtube.com/watch?v=MgPBetJWkmc


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 39

Struct Layout

Compilers could provide a class' data members with layout metadata 


=> allow representation of Rust struct fields


🔎 Retrieve layout via the C++ AST and the rustc query API

🧾



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 40

Layout

Type Layout should be as-if we had the whole program:


Widget library should layout the type without indirection


Expose metadata with layout information:

size/alignment of type


offsets of each of the public fields


overlapping sub-objects


padding tricks & vtables


Attributes, annotations, or compiler synthesized
size_t Widget_size = 32; 
size_t Widget_align = 8; 
size_t Widget_field1_offset = 0; 
size_t Widget_field2_offset = 8;



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 41

Client/External Code

Client code (external) indirects through layout metadata


Access a field:


read the metadata for the field offset


add that offset to the base object


cast the new pointer and load the field


Store an instance on the stack:


read the metadata for instance size


emit alloca instruction, to setup as needed



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 42

Library Code

Library code (internal) eliminates all indirection


Access a field:


read the metadata for the field offset


add that offset to the base object


cast the new pointer and load the field


Store an instance on the stack:


read the metadata for instance size


emit alloca instruction, to setup as needed

performance: indirects only when necessary



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 43

Dynamically-sized

Support for dynamically-sized things on the stack is key (eg. LLVM) 


Compilers can make use of this for of ABI-stable value types: 


you have local variable of some struct defined in an ABI-stable library 


so you don’t know it’s size until load time 


Dynamic allocs can handle this nicely (with minimal perf impact)


C++ desperately wants all objects to have compile-time-constant size 


❌ the notion of sizeof/alignof being runtime values clashes with the C++ model




2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 44

Interop Domains

By explicitly modeling the boundaries between software modules that evolve 
separately vs. together:  


introduce appropriate indirections across separately-evolved software 
modules 


while optimizing away that indirection within software modules that are 
always compiled together



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design?

Library App

Library

45

Interop Domains

An interop domain contains code that will always be compiled together


Domains can control where the costs of interop are paid

struct Widget

struct Client



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 46

Interop Domains

Optimization vs. Resilience 

Across resilience domains => maintain stable ABI


Within a resilience domain => all implementation details are fair game 


no indirections (direct access, no computed metadata)


no guarantees made


Optimizations need to be aware of resilience domain boundaries


A program can have just 1 resilience domain 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 47

Tail Padding & Rust ABI

C++ is allowed to reuse tail padding of structs, but Rust does not 

Rust treats tail padding as part of the value  
- users expect to be able to memcpy() of size_of::<T>() bytes
C++ does not allow this 
- fields of a child class may be placed in tail padding of the base class

A field with [[no_unique_address]] may have its tail padding reused for a neighbor field

Prevents Rust from turning a C++ child reference into a base class reference   
- doing so would allow overwriting the tail padding (and thereby the child fields)



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 48

Rust ABI Stability

Rust dev: "Can we have stable ABI?"


Rust dev: "We have stable ABI at home."




2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 48

Rust ABI Stability

Rust dev: "Can we have stable ABI?"


Rust dev: "We have stable ABI at home."


Stable ABI at home:  #[repr(C)] 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 49

Rust ABI

extern "C" fn

Status quo: repr(C) - fake it, till you make it 😀


Using the C calling convention for function definitions and calls


Using the C data layout for a type


Definitions of C types like char, int, long, etc.


Exporting an item under a stable linking symbol


Limited to C types, mostly


No slices

#[repr(C)]

std::ffi::c_*

#[no_mangle]

u8, i64, c_int, c_char, ... 
&T, &mut T 
*const T, *mut T 
struct



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 50

Rust ABI

The Future™: calling convention and data layout


Stable calling convention that supports common data types 

&str  &[u8]  etc. 

Standard data layout that supports enums (with data), etc.

enum  struct 

Stable layout guarantees of common standard library types

Option  Result  etc. 

extern "crabi" fn

#[repr(crabi)]

#[repr(crabi)] in std

crABI  
github.com/joshtriplett/rfcs/blob/text/3470-crabi.md

https://github.com/joshtriplett/rfcs/blob/crabi-v1/text/3470-crabi-v1.md


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 51

Rust ABI

#[export]

The Future™: mechanism for exporting/importing, naming symbols 
and working with dynamic libraries


Exporting items under stable linking symbols, supporting crates, 
modules, methods


Use a crate as dynamic library, only importing the exported items


Cargo features for dynamically linking to Rust libraries

extern dyn crate

cargo dynamic deps



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 52

Rust ABI

The Future™: trait objects/vtables and typeid


A standard data layout for dynamic trait objects (v-tables)

&dyn T  &mut dyn T  Box<dyn T> 

A way of dealing with types that depend on global state (eg. allocated objects)

Box  Vec 

Stable typeid

Any  catch_unwind 

Access to std structures like maps through dynamic std trait objects

&dyn HashMap  etc. 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 53

Rust ABI

The Future™: "Don't stop me now!" 🎶


Turning parts of std into an opt-in dynamic library with a stable ABI (std as dylib)


Tools to help with detect/maintaining ABI compatibility and tools to debug ABI issues


Store signatures, data layouts in binaries (introspection)

ABI Cafe 🧩 ☕
faultlore.com/abi-cafe/book/


Pair Your Compilers At The ABI Café: 

faultlore.com/blah/abi-puns/

https://faultlore.com/abi-cafe/book/
https://faultlore.com/blah/abi-puns/


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 54

Slide Title



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 55

I like to move it, move it...

Object Relocation

One particularly sensitive topic about handling C++ values 

is that they are all conservatively considered non-relocatable 




2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 56

I like to move it, move it...

Object Relocation

In contrast, a relocatable value would preserve its invariant,

 even if its bits were moved arbitrarily in memory 


For example, an int32 is relocatable because moving its 4 bytes 

would preserve its actual value, so the address of that value does not matter to its integrity



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 57

I like to move it, move it...

Object Relocation

C++'s assumption of non-relocatable values hurts everybody 

for the benefit of a few questionable designs



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 58

I like to move it, move it...

Object Relocation

Only a minority of objects are genuinely non-relocatable:


Eg.

- objects that use internal pointers

- objects that need to update observers that store pointers to them



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

Many libraries already optimize for such types



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 59

Trivially Relocatable

Relocating an object to a distinct physical location is a destructive move

 - create new object having original value at destination

 - destroy the source object

For a lot of types (eg. std container types): copying the bytes and discarding the source

 - anything with no self-references, eg. std::vector, std::unique_ptr, etc.

Many libraries already optimize for such types
Trivial relocation standardizes this important optimization



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an 
object from one location to another by copying its bits — an operation known as trivial relocation 

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an 
object from one location to another by copying its bits — an operation known as trivial relocation 

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an 
object from one location to another by copying its bits — an operation known as trivial relocation 

Some types even support bitwise swapping, which requires replacing the objects passed to the 
swap function, without violating any object invariants

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an 
object from one location to another by copying its bits — an operation known as trivial relocation 

Some types even support bitwise swapping, which requires replacing the objects passed to the 
swap function, without violating any object invariants

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 60

I like to move it, move it...

Trivial Relocatability C++26 
Safely relocate objects in memory

wg21.link/P2786

Many types in C++ cannot be trivially moved or destroyed, but do support trivially moving an 
object from one location to another by copying its bits — an operation known as trivial relocation 

Some types even support bitwise swapping, which requires replacing the objects passed to the 
swap function, without violating any object invariants

Optimizing containers to take advantage of this property of a type is already in widespread use 
throughout the industry, but is undefined behavior as far as the language is concerned

http://wg21.link/P2786


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 61

Trivially Relocatable

A class is trivially relocatable if: 


it has no virtual base classes


all of its sub-objects are trivially relocatable


it has no deleted destructor


AND: 


its move constructor, move-assignment operator, and destructor are defaulted


OR


it's tagged with the trivially_relocatable_if_eligible keyword

😅

#def



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 62

I like to move it, move it...

C++ and Rust have opposite ways of handling move: 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 62

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type


render the moved-from object inaccessible

C++ and Rust have opposite ways of handling move: 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 62

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type


render the moved-from object inaccessible

C++ likes to copy by default

C++ and Rust have opposite ways of handling move: 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 62

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type


render the moved-from object inaccessible

C++ likes to copy by default

C++ is by default needing move functions (ctor, =) 

eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)


leaves the moved-from value accessible to be destroyed at the end of the scope

C++ and Rust have opposite ways of handling move: 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 62

I like to move it, move it...

Rust likes to move by default

does memcpy() on the bytes of T, regardless of type


render the moved-from object inaccessible

C++ likes to copy by default

C++ is by default needing move functions (ctor, =) 

eg. std::string cannot be memcopy-ed due to SSO (self referential * in some implementations)


leaves the moved-from value accessible to be destroyed at the end of the scope

Rust Pin solves the issue with self-referential types

not ergonomic (pollutes the context)

C++ and Rust have opposite ways of handling move: 



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 63

I like to move it, move it...

❌ Place a C++ object on a Rust stack since it cannot be safely memcopy-moved 
(relocated)


C++26: Make C++ types trivially relocatable (annotate types) 


Get standard library to be relocatable 

=> allow most C++ types on the Rust stack (efficiency)

camio.github.io/trivially_relocate_rust/trivially_relocate_rust.pdf
Improving Rust/C++ Interop with Trivial Relocatability:📖

https://camio.github.io/trivially_relocate_rust/trivially_relocate_rust.pdf


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 64

I like to move it, move it...

Support for destructive moves in C++ would match the behavior of Rust drop mechanics

📦 moveit 

safe in-place construction of Rust and C++ objects

mirrors Rust's drop semantics in its destructive moves 

moved-from values can no longer be used afterwards

crates.io/crates/moveit

https://crates.io/crates/moveit


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 65

Slide Title

Let's talk compilers!



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 66

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?) ⚙



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 66

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?)

High-fidelity language semantics & mapping of vocabulary types: 

front-ends (C++, rustc)

toolchain independent IR

support libs?

⚙



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 66

Compilers & Interop

Many of the tricks here require deep compiler involvement:

on C++ side (pick your poison 🙂)

on Rust side (easy: 1 instance?)

High-fidelity language semantics & mapping of vocabulary types: 

front-ends (C++, rustc)

toolchain independent IR

support libs?

Binary-level fidelity, ABI, linking, dylib, etc.  

platform integration

post-build tooling

codegen / back-end

⚙



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 67

Compilers & Interop

C++26 Reflection will be a game changer for lang interop!  

The new DuckTape



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 68

Compilers & Interop

Herb Sutter: "Reflection: C++’s Decade-Defining Rocket Engine" (CppCon 2025)
youtube.com/watch?v=7z9NNrRDHQU

C++26 Reflection will be a game changer for lang interop!  

https://www.youtube.com/watch?v=7z9NNrRDHQU


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 69

Slide Title

Who's driving this thing?



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 70

Active Effort

This year, there have been effervescent talks in the Rust Project & community about this 
topic (in the broader interop context, not just C++)  



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 70

Active Effort

Short term: Rust25H1 Project Goals

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

This year, there have been effervescent talks in the Rust Project & community about this 
topic (in the broader interop context, not just C++)  



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 70

Active Effort

Short term: Rust25H1 Project Goals

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

Evaluate approaches for "seamless" interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

This year, there have been effervescent talks in the Rust Project & community about this 
topic (in the broader interop context, not just C++)  



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 70

Active Effort

Short term: Rust25H1 Project Goals

Contribute engineering time to some of the key interop crates

Gain perspective on what sort of challenges need solutions external to those crates

Medium term:

Evaluate approaches for "seamless" interop between C++ and Rust

Document the problem space of current interop challenges (identify the gaps)

Facilitate top-down discussions about priorities and tradeoffs

Rust Foundation joined INCITS in order to participate in the C++ ISO standards process

(Jon Bauman, David Sankel, et.al.)

This year, there have been effervescent talks in the Rust Project & community about this 
topic (in the broader interop context, not just C++)  



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 71

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server

rust-lang.zulipchat.com

#t-lang/interop channel


You’ll find there some familiar Rust and C++ names 🙂

https://rust-lang.zulipchat.com/


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 71

Rust/C++ Interop Study Group

Interested? join the Rust Project Zulip server

rust-lang.zulipchat.com

#t-lang/interop channel


You’ll find there some familiar Rust and C++ names 🙂

🗓 Meetings: 

Feb 26 First lang-team design meeting on the topic - Notes 📝

Apr 23 Short-sync on interop interest in industry 

May 15-17 Interop study group @ Rust-All-Hands - Notes 📝

Sep 2 Interop study group @ RustConf - Notes 📝

https://rust-lang.zulipchat.com/
https://hackmd.io/@rust-lang-team/rJvv36hq1e
https://hackmd.io/SttrF3gwTrqJBVIhVtLvbw
https://hackmd.io/Ngoc6POlT4CywmocKh4MzQ


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 72

Slide Title

Must watch 🍿



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 73

Slide Title

youtube.com/watch?v=k_sp5wvoEVM

https://www.youtube.com/watch?v=k_sp5wvoEVM


2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 74

We are crubit



2025  Victor Ciura  |   Rust/C++ Interop: Carcinization or Intelligent Design? 75

Slide Title

75

Open Discussion
What does Rust/C++ interop mean for you?


What are the interop requirements/challenges of your project?



@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura 
Principal Engineer 

Rambling Idiot 
Rust Tooling @ Microsoft

________

Rust/C++ Interop: 
Carcinization or Intelligent Design?

NDC TechTown
September 2025

https://twitter.com/ciura_victor

