
@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Rust Without Fear
The Microsoft Journey

Rust Moravia Meetup
October 2025

https://twitter.com/ciura_victor

2025 Victor Ciura | Rust Without Fear 2

About me

Advanced Installer Clang Power Tools

Visual C++

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Oxidizer SDK

🦀

Rust Tooling 
Microsoft

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://visualstudio.microsoft.com
https://twitter.com/ciura_victor
https://www.office.com

2025 Victor Ciura | Rust Without Fear 3

Disclaimer
I'm just an engineer, with some opinions on stuff...

2025 Victor Ciura | Rust Without Fear 4

Touch Points

How it started - original incubations

How it's going - current projects

Developer sentiment 🤩 🙂 ☹ 😕 🤕

Current challenges

Areas of investment

Future challenges

2025 Victor Ciura | Rust Without Fear 5

How it started...

Hackathon projects

Under the radar projects

Utilities/CLI

COG saving experiments

OSS hidden crabs

🪵
✨

🍃

2025 Victor Ciura | Rust Without Fear

💻

6

But Why Rust?

🔥 👻 💸
🔒 ☁

2025 Victor Ciura | Rust Without Fear 7

How it's going

2025 Victor Ciura | Rust Without Fear 7

How it's going

Rust at Microsoft is on a super-accelerated trajectory nowadays 🧨

2025 Victor Ciura | Rust Without Fear 7

How it's going

Rust at Microsoft is on a super-accelerated trajectory nowadays 🧨

2025 Victor Ciura | Rust Without Fear 7

How it's going

Rust at Microsoft is on a super-accelerated trajectory nowadays 🧨

I’ve come to work with many of the teams spearheading these Rust efforts

2025 Victor Ciura | Rust Without Fear 7

How it's going

Rust at Microsoft is on a super-accelerated trajectory nowadays 🧨

I’ve come to work with many of the teams spearheading these Rust efforts

2025 Victor Ciura | Rust Without Fear 7

How it's going

Rust at Microsoft is on a super-accelerated trajectory nowadays 🧨

I’ve come to work with many of the teams spearheading these Rust efforts

My team's mission (in DevDiv) is to pave the path for Rust @ Microsoft 
and make our tooling the gold standard for Rust devs  
-- just like we did with C++, C#, TypeScript

2025 Victor Ciura | Rust Without Fear 8

Slide Title

C# ↔ Rust ↔ C++

They need to play nice together... for a looong time!

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

Completing our deployment of CodeQL (integrated with GitHub Copilot learnings)

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

Completing our deployment of CodeQL (integrated with GitHub Copilot learnings)

Continue to invest in hardening C & C++ code

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

Completing our deployment of CodeQL (integrated with GitHub Copilot learnings)

Continue to invest in hardening C & C++ code

Standardizing on Rust and other memory safe languages

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

Completing our deployment of CodeQL (integrated with GitHub Copilot learnings)

Continue to invest in hardening C & C++ code

Standardizing on Rust and other memory safe languages

Contribute 💰 to support the work of the Rust Foundation & core OSS projects

2025 Victor Ciura | Rust Without Fear 9

Ongoing Efforts

Making changes in our SDL operations (evolving Compliance technologies)

1ES : Rust-ready

Completing our deployment of CodeQL (integrated with GitHub Copilot learnings)

Continue to invest in hardening C & C++ code

Standardizing on Rust and other memory safe languages

Contribute 💰 to support the work of the Rust Foundation & core OSS projects

Assist developers making the transition from C, C++, C# to Rust

Investing in Rust developer tooling

Streamlining interop for hybrid projects

2025 Victor Ciura | Rust Without Fear 10

Slide Title

Extreme range of operation

⚙ ☁

2025 Victor Ciura | Rust Without Fear 11

Rust @Microsoft

Project Mu

Pluton security processor

SymCrypt (C++ ➡ Rust) + rustls

Azure Integrated HSM

Azure Boost Agents

Open VMM / Open HCL

Hyper-V

Azure SDK for Rust

Azure Data Explorer

Drasi

MIMIR

Caliptra - Hardware Root of Trust

Hyperlight / WASM

... 🤫

TBD:

⚙ Windows core components

☁ Microservices⚙ ☁

2025 Victor Ciura | Rust Without Fear 12

Rusty Windows

Rust already in the Windows kernel (since 2023)

2025 Victor Ciura | Rust Without Fear 13

Rusty Windows

Ported Windows 11 core components from C++ to Rust

DirectWrite
GDI
... 🤫

2025 Victor Ciura | Rust Without Fear 14

Driver SDK for Rust

Enable Windows driver development in Rust

💻 Surface Hid Mini Driver is now written in Rust - based on this framework

2025 Victor Ciura | Rust Without Fear 15

Rust @ Edge

Many new components

Security tokens

Password strength manager

New Check&Sum hash algorithm

...

2025 Victor Ciura | Rust Without Fear 16

Oxidation 🔥

More oxidation 🦀 efforts in progress...

TBD 🤐

2025 Victor Ciura | Rust Without Fear 17

Slide Title

Ecosystem
Enterprise-grade tooling

2025 Victor Ciura | Rust Without Fear 18

Crate Registry

📦

📦

📦

📦
📦

📦 📦

📦
📦

Amazing & thriving ecosystem!

2025 Victor Ciura | Rust Without Fear 19

Crate Registry

📦

2025 Victor Ciura | Rust Without Fear 20

Crate Registry

2025 Victor Ciura | Rust Without Fear 21

Rust Crate Review System

A system that records guidance from enterprise developers on using Rust crates,
both public and internal ones

What crates should my project use, or not use?

How should I evaluate public crates? (and record the evaluation)

What are the preferred crates for particular purposes?

How to keep a rigorous SBOM posture for the project?

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

Proactively ensure that enterprise Rust ecosystem is built on the stable and thriving part
of the OSS Rust ecosystem, lowering the risk of being affected

eg. vulnerability reported on a hobby-project crate, with a single owner who is not maintaining it
anymore

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

Proactively ensure that enterprise Rust ecosystem is built on the stable and thriving part
of the OSS Rust ecosystem, lowering the risk of being affected

eg. vulnerability reported on a hobby-project crate, with a single owner who is not maintaining it
anymore

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

Proactively ensure that enterprise Rust ecosystem is built on the stable and thriving part
of the OSS Rust ecosystem, lowering the risk of being affected

eg. vulnerability reported on a hobby-project crate, with a single owner who is not maintaining it
anymore

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project

lowering the company’s vulnerability on third-party OSS solutions

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

Proactively ensure that enterprise Rust ecosystem is built on the stable and thriving part
of the OSS Rust ecosystem, lowering the risk of being affected

eg. vulnerability reported on a hobby-project crate, with a single owner who is not maintaining it
anymore

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project

lowering the company’s vulnerability on third-party OSS solutions

2025 Victor Ciura | Rust Without Fear 22

Rust Crate Review System

External crate dependencies, come with the inherent risk, in the form of potential security
issues, stability issues, and support and maintenance related issues

Proactively ensure that enterprise Rust ecosystem is built on the stable and thriving part
of the OSS Rust ecosystem, lowering the risk of being affected

eg. vulnerability reported on a hobby-project crate, with a single owner who is not maintaining it
anymore

A set of unbiased Rust crate evaluation criteria, used for assessment of adoptability of
third-party crates by any internal Rust project

lowering the company’s vulnerability on third-party OSS solutions

A unified, unbiased, highly automatable crate scoring system used throughout all teams/
projects in the company

2025 Victor Ciura | Rust Without Fear 23

📦 Crate Security

youtube.com/watch?v=GXkvX9A9xME

https://www.youtube.com/watch?v=GXkvX9A9xME

2025 Victor Ciura | Rust Without Fear 24

Private Crate Publishing

Publishing to internal ADO feeds

Discoverability

Central documentation ("docs.rs")

Consuming 1P crates

Challenges of org silos and micro-repositories

Crossing permission boundaries

📦
Private

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Dealing with debugging woes

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Dealing with debugging woes

Performance targets, POGO, etc.

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 25

Rust in Production

Direct impact: improve security & reduce operation cost

Gain experience with transitioning to Rust in production

Costs of learning Rust?

Costs of porting to Rust?

Costs of writing new Rust components?

Is the full pipeline of Rust tooling ready?

Dealing with debugging woes

Performance targets, POGO, etc.

Costs of maintaining a hybrid C++/Rust codebase?

Learn by doing: Exploration → Flighting → Production

2025 Victor Ciura | Rust Without Fear 26

Slide Title

Ergonomic & efficient
interop ... at scale

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 27

Rust / C++ interoperability

No need for excessive unsafe keyword
No perf overhead (avoid marshaling costs, eg. copying strings)
No boilerplate or re-declarations / No C++ annotations
Broad types support - with safety
Avoid lowering through C FFI
Ergonomics - with safety
Works with dynamic libraries (including the weirdness* of Windows DLLs, CRT)
Plays well with C++ ABI
Easily automated
Hybrid build systems (cargo 🔁 MSBuild, CMake, bazel, buck2...)

☑ Choose... none some?

2025 Victor Ciura | Rust Without Fear 28

🔌

Duck-Tape Chronicles
Rust/C++ Interop

Rust/C++ Interop:
Carcinization or Intelligent Design?

🦀

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

Rich ecosystem and streamlined dependency management

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

Rich ecosystem and streamlined dependency management

If it compiles, it works, much faster dev-compile iteration, (better with coding agents)

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

Rich ecosystem and streamlined dependency management

If it compiles, it works, much faster dev-compile iteration, (better with coding agents)

GitHub Copilot flattens the learning curve

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

Rich ecosystem and streamlined dependency management

If it compiles, it works, much faster dev-compile iteration, (better with coding agents)

GitHub Copilot flattens the learning curve

Reduced friction => more motivation for devs to write tests

2025 Victor Ciura | Rust Without Fear 29

Strengths today 🙂

Makes one a lot more conscious of pitfalls - explicit memory management

Memory-safety related vulnerabilities reduced

Data-race-related concurrency bugs reduced

Rich ecosystem and streamlined dependency management

If it compiles, it works, much faster dev-compile iteration, (better with coding agents)

GitHub Copilot flattens the learning curve

Reduced friction => more motivation for devs to write tests

Increased performance

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

Tooling and guidelines are still behind comparing with other languages

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

Tooling and guidelines are still behind comparing with other languages

Dynamic linking is challenging

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

Tooling and guidelines are still behind comparing with other languages

Dynamic linking is challenging

C++, Rust, C# interop

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

Tooling and guidelines are still behind comparing with other languages

Dynamic linking is challenging

C++, Rust, C# interop

FFI is tough to do safely even in Rust

2025 Victor Ciura | Rust Without Fear 30

Opportunities & Investments 🥵

Better developer experience in IDE/VS Code

Async code debugging is painful

Integrate Cargo with a larger build system

Tooling and guidelines are still behind comparing with other languages

Dynamic linking is challenging

C++, Rust, C# interop

FFI is tough to do safely even in Rust

Some features we rely on not being stabilized

2025 Victor Ciura | Rust Without Fear 31

Slide Title

2025 Victor Ciura | Rust Without Fear 31

Slide Title

But we still do it!

@ciura_victor
🐘 @ciura_victor@hachyderm.io
🦋 @ciuravictor.bsky.social

Victor Ciura
Principal Engineer

Rambling Idiot
Rust Tooling @ Microsoft

Rust Without Fear
The Microsoft Journey

Rust Moravia Meetup
October 2025

https://twitter.com/ciura_victor

